6 resultados para FIBROSIS QUISTICA
em Bioline International
Resumo:
Cystic fibrosis (CF) patients with Burkholderia cepacia complex (Bcc) pulmonary infections have high morbidity and mortality. The aim of this study was to compare different methods for identification of Bcc species isolated from paediatric CF patients. Oropharyngeal swabs from children with CF were used to obtain isolates of Bcc samples to evaluate six different tests for strain identification. Conventional (CPT) and automatised (APT) phenotypic tests, polymerase chain reaction (PCR)-recA, restriction fragment length polymorphism-recA, recA sequencing, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) were applied. Bacterial isolates were also tested for antimicrobial susceptibility. PCR-recA analysis showed that 36 out of the 54 isolates were Bcc. Kappa index data indicated almost perfect agreement between CPT and APT, CPT and PCR-recA, and APT and PCR-recA to identify Bcc, and MALDI-TOF and recA sequencing to identify Bcc species. The recA sequencing data and the MALDI-TOF data agreed in 97.2% of the isolates. Based on recA sequencing, the most common species identified were Burkholderia cenocepacia IIIA (33.4%), Burkholderia vietnamiensis (30.6%), B. cenocepacia IIIB (27.8%), Burkholderia multivorans (5.5%), and B. cepacia (2.7%). MALDI-TOF proved to be a useful tool for identification of Bcc species obtained from CF patients, although it was not able to identify B. cenocepacia subtypes.
Resumo:
Background: Cystic fibrosis (CF), a life-limiting autosomal recessive disorder, is considered a monogenic disease that is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. According to several studies, mutation analysis of the cystic fibrosis transmembrane conductance regulator (CFTR) gene alone is insufficient to predict the phenotypic manifestations observed in cystic fibrosis (CF) patients. In addition, some patients with a milder CF phenotype do not carry any pathogenic mutation. Tumor Necrosis Factor-alpha (TNF-α) contributes to the pathophysiology of CF by causing cachexia. There is a reverse association between TNF-α concentration in patient's sputum and their pulmonary function. Objectives: To assess the effect of non-CFTR genes on the clinical phenotype of CF, two polymorphic sites (-1031T/C and -308G/A) of the TNF-α gene, as a modifier, were studied. Patients and Methods: Focusing on the lung and gastrointestinal involvement as well as the poor growth, we first investigated the role of TNF-α gene in the clinical manifestation of CF. Furthermore, based on the hypothesis that the cumulative effect of specific alleles of multiple CF modifier genes, such as TNF-α, may create the final phenotype, we also investigated the potential role of TNF-α in non-classic CF patients without a known pathogenic mutation. In all, 80 CF patients and 157 healthy control subjects of Azeri Turkish ethnicity were studied by the PCR–RFLP method. The chi-square test with Yates' correction and Fisher's exact test were used for statistical analysis. Results: The allele and genotype distribution of the investigated polymorphisms, and their associated haplotypes were similar in all groups. Conclusions: There was no evidence that supported the association of TNF-α gene polymorphisms with non-classic CF disease or the clinical presentation of classic CF.
Resumo:
Background: Cystic fibrosis (CF) is the most prevalent lethal autosomal recessive disease with a broad spectrum of phenotypes. Mutation of ΔF508 in the CFTR gene is the most important and lethal mutation in CF, which contains 70% of all predisposing mutations for CF worldwide. Objectives: Determining frequency of genotypes with ΔF508 mutation in CFTR gene, and evaluation of correlation between genotype and phenotype of Iranian patients with CF. Patients and Methods: Thirty six patients were included in this cross sectional study. ΔF508 mutations in both alleles of the CFTR gene were checked. Results: Among 36 pediatric patients, ΔF508 mutation was detected in 9 (25%) patients; 2 patients were heterozygous, and 7 patients homozygous for this mutation. From overall 72 tracked alleles, 11 (15.2%) were found to have ΔF508 mutations. Differences in prevalence of dyspnea and bronchiectasis were significant in homozygote group, compared with non-mutated group for ΔF508. Conclusions: It seems that more ΔF508 mutated alleles lead to more severe symptoms of CF.
Resumo:
Purpose: To investigate the effect of β3-adrenoceptors (β3-AR) up-regulation on fibrosis in cardiac fibroblast cells in rats and its potential mechanism. Methods: Cardiac fibroblast cells (CFB) were isolated and identified from rats’ hearts. The β3-ARupregulated cardiac fibroblast cells were constructed by lentiviral transfection technology. Thereafter, Ang II was used to induce fibrosis in cardiac fibroblast cells, and subsequently, Western blot assay was performed to investigate fibrosis related marker proteins (TGF-β, Smad-2, p-Smad-2, Col-I and Col-III) in cardiac fibroblast cells. Results: β3-AR up-regulated cardiac fibroblast cells were successfully constructed. Furthermore, the results show that up-regulation of β3-AR increased the expressions of TGF-β, p-Smad-2, Col-I and Col- III proteins in Ang II treated cardiac fibroblast cells. Conclusion: The results suggest that up-regulation of β3-AR aggravates fibrosis of cardiac fibroblast cells. In other words, inhibition of β3-AR expressions in cardiac tissues would be beneficial for treating cardiac fibrosis and its related cardiac diseases.