2 resultados para Dilution method
em Bioline International
Resumo:
Purpose: To evaluate the antibacterial, enzyme-inhibitory and hemolytic activities of Salkylated/ aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol derivatives. Methods: Antibacterial activities of the compounds were evaluated using broth dilution method in 96 well plates. Enzyme inhibitory activities assays were investigated against α-glucosidase, butyrylcholinesterase (BchE) and lipoxygenase (LOX) using acarbose, eserine and baicalien as reference standards, respectively. A mixture of enzyme, test compound and the substrate was incubated and variation in absorbance noted before and after incubation. In tests for hemolytic activities, the compounds were incubated with red blood cells and variations in absorbance were used as indices their hemolytic activities. Results: The compounds were potent antibacterial agents. Five of them exhibited very good antibacterial potential similar to ciprofloxacin, and had minimum inhibitory concentrations (MIC) of at least 9.00 ± 4.12 μM against S. aureus, E.coli, and B. subtilis. One of the compounds had strong enzyme inhibitory potential against α-glucosidase, with IC50 of 17.11 ± 0.02 μg/mL which was better than that of standard acarbose (IC50 38.25 ± 0.12 μg/mL). Another compound had 1.5 % hemolytic activity. Conclusion: S-Alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol deviratives with valuable antibacterial, anti-enzymatic and hemolytic activities have been successfully synthesized. These compounds may be useful in the development of pharmaceutical products.
Resumo:
Purpose: To prepare and evaluate some 2-piperidinomethylamino-4-(7-H/substitutedcoumarin-3-yl)-6- chlorosubstitutedphenyl pyrimidines as antimicrobial agents. Methods: Some 2-piperidinomethylamino-4-(7-H/substitutedcoumarin-3-yl)-6-chlorosubstitutedphenyl pyrimidines were prepared by reacting 2-amino-4-(7-H/substitutedcoumarin-3-yl)-6- (chlorosubstitutedphenyl) pyrimidines with piperidine and formaldehyde. The chemical structures of the synthesized compounds were elucidated by Fourier transform infrared (FTIR), 1H-nuclear magnetic resonance (1H-NMR), mass spectrometry and elemental analysis. These compounds were investigated for their antimicrobial activity against ten bacteria and five fungi by serial plate dilution method using standard drugs, namely, ofloxacin and ketoconazole, respectively, and their minimum inhibitory concentrations (MICs) were also determined. Results: A total of eighteen new compounds (1a-18a) were synthesized. Compound 6a (MIC = 50 μg/mL; p < 0.05 or less) displayed the highest activity against S. aureus , E. faecalis , Staphylococcus epidermidis , B. subtilis , and B. cereus . Compound 6a further showed good activity (MIC = 25 μg/mL; p < 0.05 or less) against E. coli ; P. aeruginosa K. pneumonia , B. bronchiseptica , and P. vulgaris . Compounds 6a (MIC = 25 μg/mL; p < 0.0001) and 17a (MIC = 25 μg/mL; p < 0.0001) displayed very good activity against C. albicans , A. niger , A. flavus , M. purpureous , and P. citrinum , respectively. Analysis of structure-activity relationship revealed that the presence of bromo group at 7-postion of the coumarin moiety along with the 4-chlorophenyl group at position-6 of the pyrimidine ring is critical for antimicrobial activity against Gram-positive bacteria, Gram negative bacteria and fungi. Conclusion: The synthesized 2-piperidino derivatives are better antifungal and antibacterial agents than the earlier reported 2-morpholino derivatives, but require further investigations against other microbial strains to ascertain their broad spectrum antimicrobial activity.