5 resultados para Determination of aluminium in water
em Bioline International
Resumo:
Purpose: To develop a simple, fast and sensitive spectrophotometric method for the determination of tofisopam in tablet dosage form. Methods: Tofisopam as n-electron donor was reacted with two π-acceptors, namely, chloranilic acid (ChA), and 7,7,8,8 tetracyanoquinodimethane (TCNQ) to form charge transfer complexes. The complexes were evaluated spectrophotometrically at 520 and 824 nm for ChA and TCNQ, respectively. The optimum conditions for the reaction were determined and optimized. The developed method was compared with Japanese Pharmacopeia method. Results: The calibration curve was linear in the ranges 25 – 125 and 30 – 150 μg/mL for ChA and TCNQ, respectively. The lower limit of detection was 8.0 and 10.0 μg/mL for ChA and TCNQ, respectively while the slope and intercept of the calibration curves were 0.0025 and 0.011 and 0.0115 and -0.237, for ChA and TCNQ, respectively. Conclusion: The developed methods for tofisopam have good accuracy and precision, and comparable to a standard pharmacopeial method. The methods can be applied for routine analysis and in quality control.
Resumo:
Purpose: To investigate the lipid-lowering activity of two metabolites of galangin, namely, galangin-3-Oβ-D-glucuronic acid (GG-1) and galangin-7-O-β-D-glucuronic acid (GG-2). Methods: Female Sprague-Dawley rats were orally administered with galangin. The two metabolites of galangin were isolated from urine sample and purified using Sephadex LH-20 and semi-preparative high performance liquid chromatography (HPLC). The structures of the metabolites were identified by analyzing spectroscopic data. Hypolipidemic activity was evaluated in HepG2 cells. The down- or upregulation of lipogenic genes was detected using real-time quantitative polymerase chain reaction (qPCR). Results: Both metabolites of galangin showed hypolipidemic activity. These activities are closely associated with the down-regulation of lipogenic genes such as SREBP-1a, SREBP-1c, and SREBP-2 transcription factors, and the downstream genes such as FAS, ACC, and HMGR were revealed by realtime qPCR data. Conclusion: The results show that both metabolites possess better lipid-lowering activities than galangin. These hypolipidemic activities are closely associated with inhibiting key genes or proteins that regulated the biosynthesis of both cholesterol and triglycerides.
Resumo:
Purpose: To determine the heavy metal and trace element composition of the powdered aerial parts of Origanum sipyleum L. and its water extract. Methods: The heavy metal and trace elements content of the powdered plant material and 2 % aqueous extract were evaluated by x-ray fluorescence spectroscopy with silicon drift detector SDD at a resolution of 145 eV and 10,000 pulses. The process conditions were 0.1 g sample weight, process time of 300 s at a voltage of 25 kV and 50 kV, and at a current of 0.5 and 1.0 mA under helium atmosphere. Results: The major elements, K, Ca and Na, known as macronutrients, constituted 11990, 10490 and 970 ppm of the powdered drug and 8910, 2991 and 810 ppm of the water extract, respectively. Among other constituents, arsenic, lead and uranium levels were < 1, 2.1 and < 3 ppm, respectively, in the powdered material while in the aqueous extract, the levels were < 1, < 2 and 200 ppm, respectively. Conclusion: O. sipyleum is a potential source of macro- and micronutrients from which useful food additives and health supplements can be derived.
Resumo:
Purpose: To determine acrylamide (AA) levels in different brands of commercial and traditional foodstuffs available in Syria by ultra-performance liquid chromatography-mass spectrometery (UPLCMS). Methods: A total of 63 samples were analyzed. Food samples were defatted by hexane and then extracted with methanol 98 % in a vortex mixer. Thereafter, Carrez I and Carrez II were added to precipitate proteins from the co-extractives and then centrifuged to obtain a clear aqueous extract that was evaporated to dryness. The extract was dissolved in 1 mL of water, eluted through a preconditioned Oasis HLB cartridge and then filtered. The filtrate was analyzed by UPLC-MS/MS to determine AA content. Results: Among the commercial foods tested, the highest acrylamide quantity was found in potato products (396 ± 3.59 – 1844 ± 5.29 μg kg−1) and the lowest in corn products (183 ± 2.64 – 366 ± 4.58 μg kg−1). This was followed by biscuits (57 ± 2.64 – 1433 ± 2.51 μg kg−1), breakfast cereals (121 ± 8.73 – 245 ± 3.60 μg kg−1), bread (119 ± 1.73 – 263 ± 3.60 μg kg−1) and then coffee (113 ± 2.64 - 64 ± 3.05 μg kg−1). Regarding traditional foods, the highest level of AA was found in AL- Mshabak (481 ± 2.08 μg kg−1) and AL-Awamat (421 ± 2.64 μg kg−1) followed by AL-Namora (282 ± 4.35 μg kg−1) and AL-Kenafa (242 ± 2.64 μg kg−1). It was also observed that the lowest amount of AA was in fried bread (230 μg kg−1), AL-Fatayer (192 ± 3.51 μg kg−1) and AL-Baqlawa (172 ± 4.35 μg kg−1) while Eid Aqras (130 ± 4.58 μg kg−1) and AL-Brazeq (167 ± 3.78 μg kg−1) contained the least amount of AA. Conclusion: The results indicate that the highest levels of AA are found in the most commonly consumed foods. There was significant difference (p < 0.05) in AA levels among different food items and within different brands of the same product.
Resumo:
Purpose: To develop and validate a simple, efficient and reliable Liquid chromatographic-mass spectrometric (LC-MS/MS) method for the quantitative determination of two dermatological drugs, Lamisil® (terbinafine) and Proscar® (finasteride), in split tablet dosage form. Methods: Thirty tablets each of the 2 studied medications were randomly selected. Tablets were weighed and divided into 3 groups. Ten tablets of each drug were kept intact, another group of 10 tablets were manually split into halves using a tablet cutter and weighed with an analytical balance; a third group were split into quarters and weighed. All intact and split tablets were individually dissolved in a water: methanol mixture (4:1), sonicated, filtered and further diluted with mobile phase. Optimal chromatographic separation and mass spectrometric detection were achieved using an Agilent 1200 HPLC system coupled with an Agilent 6410 triple quadrupole mass spectrometer. Analytes were eluted through an Agilent eclipse plus C8 analytical column (150 mm × 4.6 mm, 5 μm) with a mobile phase composed of solvent A (water) containing 0.1% formic acid and 5mM ammonium formate pH 7.5, and solvent B (acetonitrile mixed with water in a ratio A:B 55:45) at a flow rate of 0.8 mL min-1 with a total run time of 12 min. Mass spectrometric detection was carried out using positive ionization mode with analyte quantitation monitored by multiple reaction monitoring (MRM) mode. Results: The proposed analytical method proved to be specific, robust and adequately sensitive. The results showed a good linear fit over the concentration range of 20 - 100 ng mL-1 for both analytes, with a correlation coefficient (r2) ≥ 0.999 and 0.998 for finasteride and terbinafine, respectively. Following tablet splitting, the drug content of the split tablets fell outside of the proxy USP specification for at least 14 halves (70 %) and 34 quarters (85 %) of FIN, as well as 16 halves (80 %) and 37 quarters (92.5 %) of TBN. Mean weight loss, after splitting, was 0.58 and 2.22 % for FIN half- and quarter tablets, respectively, and 3.96 and 4.09 % for TBN half- and quarter tablets,respectively. Conclusion: The proposed LC-MS/MS method has successfully been used to provide precise drug content uniformity of split tablets of FIN and TBN. Unequal distribution of the drug on the split tablets is indicated by the high standard deviation beyond the accepted value. Hence, it is recommended not to split non-scored tablets especially, for those medications with significant toxicity