6 resultados para Deficiency
em Bioline International
Resumo:
Objective: To assess serum levels of 25-hydroxyvitamin D [25(OH)D] in the first trimester and to determine the factors affecting deficiency levels and its association with pregnancy outcomes. Methods: Serum 25(OH)D concentrations were measured at 11-14 weeks’ gestation in 229 singleton pregnancies using liquid chromatography-tandem mass spectrometry. Results: The median serum 25(OH)D concentration was 10.8 ng/mL and 45.9% of women had severe vitamin D deficiency with concentrations of <10 ng/mL. Logistic regression analysis revealed that covered dressing style, lack of multivitamin intake, season of blood sampling (November-April) were factors associated with 25(OH)D deficiency. There was a negative correlation between 25(OH)D levels and gestational age at sampling. Low 25(OH)D levels were not associated with adverse pregnancy outcomes. Higher rate of cesarean section (CS) was noted in women with 25(OH)D ≥10 ng/mL compared to those with 25(OH)D < 10mg/ml ( p= 0.01). Conclusion: A high prevalence of vitamin D deficiency was observed in early pregnancy which was related to dress code, use of multi-vitamins and season at sampling. Low 25(OH)D levels were not related with adverse pregnancy outcomes. Women with severe vitamin D deficiency were more likely to deliver vaginally.
Resumo:
Background: Iron deficiency, and specifically iron deficiency anaemia, remains one of the most severe and important nutritional deficiencies in the world today. Objective: To estimate the prevalence and associated factors for iron deficiency anaemia among pre-school children in Lagos. Methodology: The study was conducted from December 2009 to February 2010 at the outpatient clinics of Lagos State University Teaching Hospital, Lagos. Serum iron, total iron binding capacity, transferrin saturation and serum ferritin were assayed in subjects. The primary outcome measured was iron deficiency anaemia established based on the following criteria: hemoglobin <11.0 g/dl1 plus 2 or more of the following: MCV <70fl, transferrin saturation <10% or serum ferritin <15ng/ dL. Statistical analysis included Pearson Chi square analysis and logistic regression analysis. Results: A total of 87 apparently healthy subjects were recruited. Only one subject had iron depletion and this child belonged to the ≤ 2 years age category. None of the recruited subjects had iron deficiency without anaemia. Nine of the study subjects (10.11%) had iron deficiency anaemia. The prevalence of iron deficiency anaemia was significantly higher among younger age group than in the older age group (19.1% Vs 2.1%, p = 0.022). The prevalence of iron deficiency anaemia was significantly higher among subjects with weight-for-age, and weight-for-height Z scores below two standard scores (83.3% and 75.0% respectively, p = <0.001 and 0.001 respectively). Conclusion: The overall prevalence of iron deficiency anaemia among study subjects was 10.11%. Iron deficiency anaemia was more common in children aged two years and below. Weight-for-age and weight-for-height Z scores below minus two standard scores were strongly associated with iron deficiency anaemia.
Resumo:
Background: Under nutrition is a problem of severe magnitude in low income countries like Nigeria. Adolescent school children might also be vulnerable. The dearth of data hinders planning of school health and nutrition programmes for school children. Objective: To determine the prevalence of stunting, thinness; vitamin A and iron deficiencies among adolescent students in Nsukka urban, Nigeria and to determine factors that are associated with these nutritional problems. Methods: A total of 400 participants were randomly selected from 717 students aged 12 – 18 years in 3 randomly selected secondary schools. Questionnaires, anthropometric measurements, and blood analyses were the data collection methods employed. Results: The prevalence of stunting was 33.3% and thinness 31.0%. Neither overweight nor obesity was observed. While 64.0% were anaemic; 44.0% had vitamin A deficiency (VAD). A total of 48.0% had both anaemia and stunting, 42% had VAD + thinness; while 40% had anaemia + VAD. Household income was a predictor of vitamin A status. Children from medium/ high income households had higher odds of having VAD than those from low income households (AOR=0.14; 95% CI=0.031, 0.607; P=0.009). Household income (AOR=0.12; 95% CI=0.021, 0.671; P=0.016), and age (AOR=0.09; 95% CI=0.014, 0.587; P=0.012) were independent determinants of height-for-age status. Conclusion: Among urban adolescent students in Nigeria, stunting, thinness, anaemia and VAD were problems of public health significance. Age and household monthly income played major roles.
Resumo:
Vitamin A (VA) deficiency (VAD) is a major nutritional public health problem among children under-5-years-old in the developing world including Kenya. A community-based cross-sectional survey among 1,630 children (aged 6-23 mos) was undertaken in Western Kenya. A questionnaire was administered to collect demographic, socio-economic and dietary intake information. Prevalence of low retinol-binding protein (RBP) concentrations was assessed using Dried Blood Spot (DBS) methodology. Analysis of RBP was carried out using rapid enzyme immunoassay (EIA) and C-reactive protein (CRP) was carried out using enzyme linked immunosorbent assay (ELISA) to estimate VA and sub-clinical inflammation statuses, respectively. Values were adjusted for influence of inflammation using CRP (CRP >5 mg/L) and population prevalence of VAD (RBP <0.825 μmol/L, biologically equivalent to 0.70 μmol/L retinol) estimated. Anthropometric data gave three indices: stunting, wasting and underweight—all of which took age and sex into consideration. Mean (geometric± SD) concentration of RBP was adequate (1.56±0.79μmol/L) but the inflammation-adjusted mean (±SE) prevalence of VAD was high (20.1±1.1%) in this population. The level of CRP was within normal range (1.06±4.95 mg/L) whilst 18.4±0.9% of the children had subclinical inflammation (CRP>5 mg/L). Intake of VA capsule (VAC) by a child was a predictor of VAD with children who have not taken VA during the past 1 year prior to the survey having a 30% increased risk of VAD (OR (CI): 1.3 (1.1-1.7); p=0.025. Additionally, age of the child was a predictor with older children (18-23 mos) having a 30 % increased risk of VAD (OR (CI): 1.3 (1.1-1.9); p=0.035); the caretaker’s knowledge on VA and nutrition was also a predictor of VAD with children whose caretaker’s had poor knowledge having a 40 % increased risk of VAD (OR (CI): 1.4 (1.0-1.9); p=0.027. A child’s district of residence was also a significant predictor of VAD. Prevalence of VAD in this sample of infants was high. Predictors of VAD included child intake of VAC in the last 1 year before the survey, older children, children whose caretakers had poor VA and nutritional knowledge and a child’s district of residence. There is a need to improve knowledge on nutrition and VA of caretakers; undertake a targeted VAC distribution, particularly in children older than 1 year and above and use a sustainable food-based intervention in the areas with severe VAD.
Resumo:
The increased prevalence of iron deficiency among infants can be attributed to the consumption of an iron deficient diet or a diet that interferes with iron absorption at the critical time of infancy, among other factors. The gradual shift from breast milk to other foods and liquids is a transition period which greatly contributes to iron deficiency anaemia (IDA). The purpose of this research was to assess iron deficiency anaemia among infants aged six to nine months in Keiyo South Sub County. The specific objectives of this study were: to establish the prevalence of infants with iron deficiency anaemia and dietary iron intake among infants aged 6 to 9 months. The cross sectional study design was adopted in this survey. This study was conducted in three health facilities in Keiyo South Sub County. The infants were selected by use of a two stage cluster sampling procedure. Systematic random sampling was then used to select a total of 244 mothers and their infants. Eighty two (82) infants were selected from Kamwosor sub-district hospital and eighty one (81) from both Nyaru and Chepkorio health facilities. Interview schedules, 24-hour dietary recall and food frequency questionnaires were used for collection of dietary iron intake. Biochemical tests were carried out by use of the Hemo-control photochrometer at the health facilities. Infants whose hemoglobin levels were less than 11g/dl were considered anaemic. Further, peripheral blood smears were conducted to ascertain the type of nutritional anaemia. Data was analyzed using the Statistical Package for Social Sciences (SPSS) computer software version 17, 2009. Dietary iron intake was analyzed using the NutriSurvey 2007 computer software. Results indicated that the mean hemoglobin values were 11.3± 0.84 g/dl. Twenty one percent (21.7%) of the infants had anaemia and further 100% of peripheral blood smears indicated iron deficiency anaemia. Dietary iron intake was a predictor of iron deficiency anaemia in this study (t=-3.138; p=0.01). Iron deficiency anaemia was evident among infants in Keiyo South Sub County. The Ministry of Health should formulate and implement policies on screening for anaemia and ensure intensive nutrition education on iron rich diets during child welfare clinics.