2 resultados para Credit supply and demand identification
em Bioline International
Resumo:
Background: West Nile virus (WNV) infection, is an arbovirus infection with high morbidity and mortality, the vector responsible for both human and animal transmission is Culex pipens complex. Objective: To determine the species distribution and seasonal abundance of Culex pipens and Culex quinquefasciatus mosquitoes in Abeokuta, Nigeria. Methods: Mosquitoes belonging to the Culex pipens complex were captured in three different locations located within Abeokuta Metropolis between March 2012 and January 2013. Individual species were identified using morphometric methods. Amplification of the Ace2 gene by PCR confirmed morphormetric identification of the mosquitoes. Results: A total of 751 mosquitoes were captured. Culex quinquefaciatus recorded the highest distribution of vectors with 56.6% and Culex pipens 43.4% (P > 0.05). Idi aba community recorded the highest distribution of mosquito vectors with 42.9% (n=322) and Culex quinqueaciatus was more abundantly distributed with 183 mosquitoes. Aro community recorded 32% (n=240) of captured mosquitoes with Culex quinquefaciatus having a higher level of abundance and lastly Kemta with a distribution of 25.1% (n=189). Conclusion: Results from this study show that potential vectors of WNV abound within Abeokuta, putting residents at high risk of West Nile infection. We advocate for introduction of routine testing of WNV in Abeokuta and Nigeria. Keywords:
Resumo:
Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis : C. parapsilosis sensu stricto, Candida orthopsilosis , and Candida metapsilosis . In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.