2 resultados para Composite resin repair
em Bioline International
Resumo:
Aim: To evaluate the clinical performance of a composite resin (CR) and a resin-modified glassionomer cement (RMGIC) for the treatment of abfraction lesions. Methods: Thirty patients with abfraction lesions in at least two premolar teeth were selected and invited to participate in this study. All restorations were made within the same clinical time frame. One tooth was restored with CR Z100TM (3M, St. Paul, MN, USA), and the other was restored with RMGIC VitremerTM (3M). The restorations were assessed immediately and 1, 6 and 12 months after the restoration, using modified US Public Health Service (USPHS) criteria: marginal integrity, marginal discoloration, wear, retention, secondary caries and hypersensitivity. The statistical analysis was based on Friedman ANOVA test and Mann-Whitney test, considering p<0.05 for statistical significance. Results: Both materials demonstrated satisfactory clinical performance after one year. In the individual analysis of each material, there was a significant difference (p<0.05) in the criteria marginal integrity and wear, for both CR and RMGIC. RMGIC exhibited more damage one year after the restoration. Comparing both materials, it was found a significant difference only for marginal discoloration, while the RMGIC restorations showed the worst prognosis after a year of evaluation. There was no significant difference in the number of retentions, caries or hypersensitivity between CR and RMGIC. Conclusions: It was concluded that CR exhibited the best clinical performance according to the cost-effectiveness and evaluation criteria used in this study.
Resumo:
Purpose: To evaluate the growth of the composite corium (constructed with fibroblast cells and gelatinco- Bletillastriata gelatin/Salvia miltiorrhiza materials) on rats. Methods: The composite artificial corium was constructed by culturing fibroblast cells in gelatin-co- Bletillastriata gelatin/Salvia miltiorrhiza materials. Full-thickness area of skin was excised from the mice and subsequently, the composite corium was transplanted on the wound. Thereafter, the growth difference of the composite artificial corium and natural corium were compared. In addition, real-time fluorogenic reverse transcription polymerase chain reaction (qRT-PCR) and western blot were performed to determine vascular endothelial growth factor (VEGF) expression at gene and protein levels. Results: The composite artificial corium showed significant repair promoting effect on the skin, and the structure of the repaired skin was similar to that of natural corium. Interestingly, PCR and western blot results showed that the expressions of VEGF were higher in composite artificial corium than in natural corium on days 3 and 7 post-transplantation. Conclusion: The composite artificial corium has some clinical prospects for use in the treatment of wounds on large areas of skin.