2 resultados para CADMIUM-SULFIDE
em Bioline International
Resumo:
The phytoextraction process implies the use of plants to promote the elimination of metal contaminants in the soil. In fact, metal-accumulating plants are planted or transplanted in metal-contaminated soil and cultivated in accordance with established agricultural practices. The objective of the present study was to evaluate the productivity and Cd phytoextraction capacity of white lupine ( Lupinus albus L.) and narrow-leafed lupine ( Lupinus angustifolius L.), as well as the effect on residual Cd concentration in the soil. Both species of lupines were grown at three CdCl2 rates (0, 1, and 2 mg kg-1), under three agroclimatic conditions in Chile in 2013. In the arid zone (Pan de Azúcar, 73 mm precipitation), narrow-leafed lupine production was significantly (P < 0.05) higher than white lupine (4.55 vs. 3.26 Mg DM ha-1, respectively). In locations with higher precipitation (Santa Rosa, 670 mm; Carillanca, 880 mm), narrow-leafed lupine DM production was slightly higher than in Pan de Azúcar, but white lupine was approximately three times higher. Total plant Cd concentrations in white and narrow-leafed lupine increased as Cd rates increased in the three environments, but they were much higher in narrow-leafed lupine than white lupine; 150%, 58%, and 344% higher in Pan de Azúcar, Santa Rosa, and Carillanca, respectively. Cadmium uptake (g Cd ha-1) and apparent recovery were also higher (P < 0.05) in narrow-leafed lupine in two environments (Pan de Azúcar and Carillanca). These results suggest that narrow-leafed lupine present higher potential as phytoremediation species than white lupine.
Resumo:
Purpose: To study the structure-activity relationships of synthetic multifunctional sulfides through evaluation of lipoxygenase and anti-bacterial activities. Methods: S-substituted derivatives of the parent compound 5-(1-(4-chlorophenylsulfonyl) piperidin-3- yl)-1, 3, 4-oxadiazole-2-thiol were synthesized through reaction with different saturated and unsaturated alkyl halides in DMF medium, with NaH catalyst. Spectral characterization of each derivative was carried out with respect to IR, 1H - NMR, 13C - NMR and EI - MS. The lipoxygenase inhibitory and antibacterial activities of the derivatives were determined using standard procedures. Results: Compound 5e exhibited higher lipoxygenase inhibitory potential than the standard (Baicalein®), with % inhibition of 94.71 ± 0.45 and IC50 of 20.72 ± 0.34 μmoles/L. Compound 5b showed significant antibacterial potential against all the bacterial strains with % inhibition ranging from 62.04 ± 2.78, 69.49 ± 0.41, 63.38 ± 1.97 and 59.70 ± 3.70 to 78.32 ± 0.41, while MIC ranged from 8.18 ± 2.00, 10.60 ± 1.83, 10.84 ± 3.00, 9.81 ± 1.86 and 11.73 ± 5.00 μmoles/L for S. typhi, E. coli, P. aeruginosa, B. subtilis and S. aureus, respectively. Compounds 5d, 5e and 5g showed good antibacterial activity against S. typhi and B. subtilis bacterial strains. Conclusion: The results suggest that compound 5e bearing n-pentyl group is a potent lipoxygenase inhibitor, while compound 5b with n-propyl substitution is a strong antibacterial agent. In addition, compounds 5d, 5e and 5g bearing n-butyl, n-pentyl and n-octyl groups, respectively, are good antibacterial agents against S. typhi and B. subtilis.