2 resultados para Butyrylcholinesterase
em Bioline International
Resumo:
Purpose: To evaluate the antibacterial, enzyme-inhibitory and hemolytic activities of Salkylated/ aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol derivatives. Methods: Antibacterial activities of the compounds were evaluated using broth dilution method in 96 well plates. Enzyme inhibitory activities assays were investigated against α-glucosidase, butyrylcholinesterase (BchE) and lipoxygenase (LOX) using acarbose, eserine and baicalien as reference standards, respectively. A mixture of enzyme, test compound and the substrate was incubated and variation in absorbance noted before and after incubation. In tests for hemolytic activities, the compounds were incubated with red blood cells and variations in absorbance were used as indices their hemolytic activities. Results: The compounds were potent antibacterial agents. Five of them exhibited very good antibacterial potential similar to ciprofloxacin, and had minimum inhibitory concentrations (MIC) of at least 9.00 ± 4.12 μM against S. aureus, E.coli, and B. subtilis. One of the compounds had strong enzyme inhibitory potential against α-glucosidase, with IC50 of 17.11 ± 0.02 μg/mL which was better than that of standard acarbose (IC50 38.25 ± 0.12 μg/mL). Another compound had 1.5 % hemolytic activity. Conclusion: S-Alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol deviratives with valuable antibacterial, anti-enzymatic and hemolytic activities have been successfully synthesized. These compounds may be useful in the development of pharmaceutical products.
Resumo:
Purpose: To characterise the phytochemical profile of whole plants of Centaurea balsamita, C. depressa and C. lycopifolia with LC-ESI-MS/MS, and as well as their antioxidant, anticholinesterase and antimicrobial activities. Methods: Organic and aqueous extracts of the three Centaurea species were evaluated for DPPH free radical, ABTS cation radical scavenging and cupric reducing antioxidant capacity (CUPRAC). Acetyland butyryl-cholinesterase enzyme inhibition abilities of the extracts using petroleum ether, acetone, methanol and water were studied to determine anticholinesterase activity, while antimicrobial activity was determined by disc diffusion method using appropriate antimicrobial standards and organisms. The phytochemical components of the methanol extracts were assessed by LC-MS/MS. Results: The methanol extract of C. balsamita exhibited much higher DPPH free and ABTS cation radicals scavenging activities (with IC50 of 62.65 ± 0.97 and 24.21 ± 0.70 mg/ml, respectively) than the other extracts. The petroleum ether extracts of the plant species exhibited moderate inhibitory activity against butyrylcholinesterase enzymes while the acetone extract of C. balsamita showed good antifungal activity against Candida albicans. Quinic acid (17513 ± 813 μg/g, 63874 ± 3066 μg/g and 108234 ± 5195 μg/g) was the major compound found in the methanol extracts of C. balsamita, C. depressa and C. Lycopifolia, respectively. Conclusion: These results indicate quinic acid is the major compound in the three plant species and that Centaurea balsamita has significant antioxidant, anticholinesterase and antimicrobial properties. Further studies to identify the compounds in the extracts responsible for the activities are required.