5 resultados para Axenic strains
em Bioline International
Resumo:
Background: Human is an essential cellular enzyme that is found in all human cells. As this enzyme is upregulated in cancer cells exceedingly, it is used as a target for cancer chemotherapeutic drug development. As such, producing the in-house enzyme for the purpose to speed up the search for more cost-effective and target specific hTopoI inhibitors is warranted. This study aims to compare the optimised conditions for the expression of hTopoI in KM71H (MutS) and X33 (Mut+) strains of Pichia pastoris P. pastoris transfected with an hTopoI recombinant vector was used for the optimization of a higher level of hTopoI expression. Results: In the process, fed-batch cultivation parameters that influence the expression of hTopoI, such as culture temperature, methanol induction and feeding strategy, were optimised in the transfected KM71H and X33 P. pastoris strains in a shake flask system. The cell density and total protein concentration (protein level) of transfected P. pastoris were compared to determine the optimum culture conditions for each transfected P. pastoris strain. A higher hTopoI level was observed in the transfected KM71H culture supernatant (2.26 ng/mL) when the culture was incubated in the optimum conditions. Conclusions: This study demonstrated that MutS strain (KM71H) expressed and secreted a higher level of hTopoI heterologous protein in the presence of methanol compared to the Mut+ strain; X33 (0.75 ng/mL). However, other aspects of optimization, such as pH, should also be considered in the future, to obtain the optimum expression level of hTopoI in P. pastoris.
Resumo:
Background: A limited number of antibiotics are recommended for the therapy of Stenotrophomonas maltophilia infections due to therapy difficulties caused by its numerous mechanisms of resistance. Objectives: In this study conducted over a period of approximately 5 years we aimed to determine resistance rates of S. maltphilia based on drug classification recommended by Clinical and Laboratory Standards Institute. Methods: A total of 118 S. maltphilia strains isolated from various clinical specimens between January 2006 and June 2012 were included in the study. BD Phoenixautomated microbiology system (Becton Dickinson, USA) was utilized for species level identification and antibiotic susceptibility testing. Results: Sixty seven of S. maltphilia strains were isolated from tracheal aspirate isolates, 17 from blood, 10 from sputum, 10 from wound and 14 from other clinical specimens. Levofloxacin was found to be the most effective antibiotic against S. maltphilia strains with resistance rate of 7.6%. The resistance rates to other antibiotics were as follows: chloramphenicol 18.2%, trimethoprim-sulfamethoxazole 20.3% and ceftazidime 72%. Conclusion: The study revealed that S. maltphilia is resistant to many antibiotics. The treatment of infections caused by S. maltphilia should be preferred primarily as levofloxacin, chloramphenicol, and TMP-SXT, respectively.
Resumo:
In the present paper, we announce new draft genomes of four Leptospira interrogans strains named Acegua, RCA, Prea, and Capivara. These strains were isolated in the state of Rio Grande do Sul, Brazil, from cattle, dog, Brazilian guinea pig, and capybara, respectively.
Resumo:
During its life cycle Leishmania spp. face several stress conditions that can cause DNA damages. Base Excision Repair plays an important role in DNA maintenance and it is one of the most conserved mechanisms in all living organisms. DNA repair in trypanosomatids has been reported only for Old World Leishmania species. Here the AP endonuclease from Leishmania (L.) amazonensis was cloned, expressed in Escherichia coli mutants defective on the DNA repair machinery, that were submitted to different stress conditions, showing ability to survive in comparison to the triple null mutant parental strain BW535. Phylogenetic and multiple sequence analyses also confirmed that LAMAP belongs to the AP endonuclease class of proteins.
Resumo:
Background: Initial resistance to antibiotics is the main reason for the failure of Helicobacter pylori (H. pylori) eradication in children. Objectives: As we commonly face high antibiotic resistance rates in children, we aimed to determine the susceptibility of H. pylori to common antibiotics. Patients and Methods: In this cross-sectional in vitro study, 169 children younger than 14 years with clinical diagnosis of peptic ulcer underwent upper gastrointestinal endoscopy. Biopsy specimens from stomach and duodenum were cultured. In isolated colonies, tests of catalase, urease, and oxidase as well as gram staining were performed. After confirming the colonies as H. pylori, the antibiogram was obtained using disk diffusion method. Results: Culture for H. pylori was positive in 12.3% of the specimens, urease test in 21.3%, serological test in 18.9% and stool antigen test was positive in 21.9%. We could show high specificity but moderate sensitivity of both histological and H. pylori stool antigen tests to detect H. pylori. The overall susceptibility to metronidazole was 42.9%, amoxicillin 95.2%, clarithromycin 85.7%, furazolidone 61.9%, azithromycin 81.0%, and tetracycline 76.2% with the highest resistance to metronidazole and the lowest to clarithromycin. Conclusions: In our region, there is high resistance of H. pylori to some antibiotics including metronidazole and furazolidone among affected children. To reduce the prevalence of this antibiotic resistance, more controlled use of antibiotics should be considered in children.