2 resultados para Agro-industrialization

em Bioline International


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hardpans (plough/hoe pans) are commonly believed to restrict plant root growth and crop yields under conventional small-scale agriculture in sub-Saharan Africa. This study questions the notion of widespread hardpans in Zambia and their remedy under conservation tillage. Soil penetration resistance was measured in 8x12 grids, covering 80 cm wide and 60 cm deep profiles in 32 soil pits. Large and fine maize roots were counted in 8x6 grids. Soil samples from mid-rows were analysed for pH, exchangeable H+, exchangeable Al3+, cation exchange capacity, total N and extractable P (Bray 1) at six depths from 0-10 to 50-60 cm. Cultivation-induced hardpans were not detected. Soils under conservation tillage were more compact at 5 cm depth than soils under conventional tillage. No differences in root distributions between conservation and conventional tillage were found. Maize ( Zea mays L. ) roots were largely confined to a relatively small soil volume of about 30 cm x 30 cm x 30 cm. Root growth appeared to be restricted by a combination of low concentrations of N and P. Soil acidity and Al saturation appeared to play a minor role in root distribution. L-shaped taproots in soils under manual tillage reported earlier were not necessarily due to hardpans, but may rather be caused by temporarily dry, impenetrable subsoils early in the rain season. There is no scientific basis for the recommendation given to farmers by agricultural extension workers to “break the hardpan” in fields under manual or animal tillage in the study areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Agro-wastes were used for the production of fibrinolytic enzyme in solid-state fermentation. The process parameters were optimized to enhance the production of fibrinolytic enzyme from Bacillus halodurans IND18 by statistical approach. The fibrinolytic enzyme was purified, and the properties were studied. Results: A two-level full factorial design was used to screen the significant factors. The factors such as moisture, pH, and peptone were significantly affected enzyme production and these three factors were selected for further optimization using central composite design. The optimum medium for fibrinolytic enzyme production was wheat bran medium containing 1% peptone and 80% moisture with pH 8.32. Under these optimized conditions, the production of fibrinolytic enzyme was found to be 6851 U/g. The fibrinolytic enzyme was purified by 3.6-fold with 1275 U/mg specific activity. The molecular mass of fibrinolytic enzyme was determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis, and it was observed as 29 kDa. The fibrinolytic enzyme depicted an optimal pH of 9.0 and was stable at a range of pH from 8.0 to 10.0. The optimal temperature was 60°C and was stable up to 50°C. This enzyme activated plasminogen and also degraded the fibrin net of blood clot, which suggested its potential as an effective thrombolytic agent. Conclusions: Wheat bran was found to be an effective substrate for the production of fibrinolytic enzyme. The purified fibrinolytic enzyme degraded fibrin clot. The fibrinolytic enzyme could be useful to make as an effective thrombolytic agent.