1 resultado para Adubacao foliar

em Bioline International


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micronutrients are part of many crucial physiological plant processes. The combined application of N and micronutrients helps in obtaining grain yield with beneficial technological and consumer properties. The main micronutrients needed by cereals include Cu, Mn, and Zn. The subject of this study was to determine yield, quality indicators (protein content and composition, gluten content, grain bulk density, Zeleny sedimentation index, and grain hardness), as well as mineral content (Cu, Zn, Mn, Fe) in winter wheat grain ( Triticum aestivum L.) fertilized by foliar micronutrient application. A field experiment was carried out at the Educational and Experimental Station in Tomaszkowo, Poland. The application of mineral fertilizers (NPK) supplemented with Cu increased Cu content (13.0%) and ω, α/β, and γ (18.7%, 4.9%, and 3.4%, respectively) gliadins in wheat grain. Foliar Zn fertilization combined with NPK increased Cu content (14.9%) as well as high (HMW) and low molecular weight (LMW) glutenins (38.8% and 6.7%, respectively). Zinc fertilization significantly reduced monomeric gliadin content and increased polymeric glutenin content in grain, which contributed in reducing the gliadin:glutenin ratio (0.77). Mineral fertilizers supplemented with Mn increased Fe content in wheat grain (14.3%). It also significantly increased protein (3.8%) and gluten (4.4%) content, Zeleny sedimentation index (12.4%), and grain hardness (18.5%). Foliar Mn fertilization increased the content of ω, α/β, and γ gliadin fractions (19.9%, 9.5%, and 2.1%, respectively), as well as HMW and LMW glutenins (18.9% and 4.5%, respectively). Mineral NPK fertilization, combined with micronutrients (Cu + Zn + Mn), increased Cu and Zn content in grain (22.6% and 17.7%, respectively). The content of ω, α/β, and γ gliadins increased (20.3%, 10.5%, and 12.1%, respectively) as well as HMW glutenins (7.9%).