8 resultados para Abdulaziz Abdullah A Alorf
em Bioline International
Resumo:
Background: Agro-wastes were used for the production of fibrinolytic enzyme in solid-state fermentation. The process parameters were optimized to enhance the production of fibrinolytic enzyme from Bacillus halodurans IND18 by statistical approach. The fibrinolytic enzyme was purified, and the properties were studied. Results: A two-level full factorial design was used to screen the significant factors. The factors such as moisture, pH, and peptone were significantly affected enzyme production and these three factors were selected for further optimization using central composite design. The optimum medium for fibrinolytic enzyme production was wheat bran medium containing 1% peptone and 80% moisture with pH 8.32. Under these optimized conditions, the production of fibrinolytic enzyme was found to be 6851 U/g. The fibrinolytic enzyme was purified by 3.6-fold with 1275 U/mg specific activity. The molecular mass of fibrinolytic enzyme was determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis, and it was observed as 29 kDa. The fibrinolytic enzyme depicted an optimal pH of 9.0 and was stable at a range of pH from 8.0 to 10.0. The optimal temperature was 60°C and was stable up to 50°C. This enzyme activated plasminogen and also degraded the fibrin net of blood clot, which suggested its potential as an effective thrombolytic agent. Conclusions: Wheat bran was found to be an effective substrate for the production of fibrinolytic enzyme. The purified fibrinolytic enzyme degraded fibrin clot. The fibrinolytic enzyme could be useful to make as an effective thrombolytic agent.
Natural antifouling compound production by microbes associated with marine macroorganisms — A review
Resumo:
In the marine environment, all hard surfaces including marine macroorganims are colonized by microorganisms mainly from the surrounding environment. The microorganisms associated with marine macroorganisms offer tremendous potential for exploitation of bioactive metabolites. Biofouling is a continuous problem in marine sectors which needs huge economy for control and cleaning processes. Biotechnological way for searching natural product antifouling compounds gained momentum in recent years because of the environmental pollution associated with the use of toxic chemicals to control biofouling. While, natural product based antifoulants from marine organisms particularly sponges and corals attained significance due to their activities in field assays, collection of larger amount of organisms from the sea is not a viable one. The microorganisms associated with sponges, corals, ascidians, seaweeds and seagrasses showed strong antimicrobial and also antifouling activities. This review highlights the advances in natural product antifoulants research from microbes associated with marine organisms.
Resumo:
Introduction: Previous studies had enlisted renal medullary carcinoma (RMC) as the seventh nephropathy in sickle cell disease (SCD). Clinical experience has contradicted this claim and this study is targeted at refuting or supporting this assumption. Objective: To estimate the prevalence of RMC and describe other renal complications in SCD. Materials and methods: 14 physicians (haematologists and urologists) in 11 tertiary institutions across the country were collated from patients’ case notes and hospital SCD registers. Results: Of the 3,596 registered sickle patients, 2 (0.056%) had been diagnosed with RMC over a ten year period, thereby giving an estimated prevalence rate of 5.6 per 100,000. The most common renal complication reported by the attending physicians was chronic kidney disease (CKD). The frequency of routine renal screening for SCD patients varied widely between centres – most were done at diagnosis, annually or bi-annually. Conclusion: The ten year prevalence of RMC in Nigerian SCD patients was determined to be 5.6 (estimated incidence of 0.56). RMC is not more common in SCD patients and therefore cannot be regarded as a “Seventh Sickle nephropathy”. Most of the managing physicians reported that the commonest nephropathy observed in their SCD patients was chronic kidney disease.
Resumo:
Background: Renal cystic diseases are important causes of chronic kidney disease (CKD). Objectives: We report the pattern of renal cystic disease in children and evaluate the outcome of children with multicystic dysplastic kidney (MCDK). Patients and Methods: Retrospective study of all children with cystic kidney diseases at King Abdulaziz University hospital from 2006 to 2014. Results: Total of 55 children (30 males); 25 MCDK, 22 polycystic kidney diseases (PKD), 4 nephronophthises and 4 renal cysts. Consanguinity was positive in 96.2%. MCDK and simple renal cyst patients had good renal function while PKD and nephronophthisis developed renal impairment. Most MCKD were diagnosed ante-natally, 16 of them were followed up for 3.4 (1.97) year. Their last creatinine was 33.9 (13.5) umol/L. MCDK was spontaneously involuted at mean age of 2.6 (1.3) years in 56%. Conclusions: MCDK is the commonest cystic renal disease and diagnosed ante-natally in the majority of cases. It has a good prognosis.
Resumo:
Purpose: To develop and optimise some variables that influence fluoxetine orally disintegrating tablets (ODTs) formulation. Methods: Fluoxetine ODTs tablets were prepared using direct compression method. Three-factor, 3- level Box-Behnken design was used to optimize and develop fluoxetine ODT formulation. The design suggested 15 formulations of different lubricant concentration (X1), lubricant mixing time (X2), and compression force (X3) and then their effect was monitored on tablet weight (Y1), thickness (Y2), hardness (Y3), % friability (Y4), and disintegration time (Y5). Results: All powder blends showed acceptable flow properties, ranging from good to excellent. The disintegration time (Y5) was affected directly by lubricant concentration (X1). Lubricant mixing time (X2) had a direct effect on tablet thickness (Y2) and hardness (Y3), while compression force (X3) had a direct impact on tablet hardness (Y3), % friability (Y4) and disintegration time (Y5). Accordingly, Box-Behnken design suggested an optimized formula of 0.86 mg (X1), 15.3 min (X2), and 10.6 KN (X3). Finally, the prediction error percentage responses of Y1, Y2, Y3, Y4, and Y5 were 0.31, 0.52, 2.13, 3.92 and 3.75 %, respectively. Formula 4 and 8 achieved 90 % of drug release within the first 5 min of dissolution test. Conclusion: Fluoxetine ODT formulation has been developed and optimized successfully using Box- Behnken design and has also been manufactured efficiently using direct compression technique.
Resumo:
Purpose: To evaluate synergy in the analgesic effects of a combination therapy of carbamazepine (CBZ) and gabapentin (GBP) in diabetic neuropathic pain. Methods: Neuropathic pain was produced in rats by a single intraperitoneal injection of streptozotocin (STZ) at 60 mg/kg. CBZ, GBP, and their combination were orally administered at varying doses (GBP 30 - 180 mg/kg; CBZ 20 - 40 mg/kg) comparable to their therapeutic doses in humans. Nociceptive responses in the diabetic rats were assessed using hot plate test. Results: Hot plate latency significantly increased with oral administration of GBP at a dose of 180 mg/kg when compared with control group (p < 0.05), while at a dose of 90 mg/kg, the increase was not significant. Oral administration of CBZ at doses of 20 and 40 mg/kg did not produce any significant impact on hot plate latency. However, a combination of GBP at 90 mg/kg and CBZ at 20 mg/kg produced significant increase in latency, compared with control group and other groups (p < 0.05), except the group that received 180 mg/kg GBP. The combination of low dose GBP 30 mg/kg and carbamazepine 30 mg/kg had no significant effect on latency (p > 0.05). Conclusion: The results obtained in this study provide useful information on the combination therapy of GBP and CBZ, which may be applied in the treatment of pain in diabetic neuropathy.
Resumo:
Proteome analysis is a complex and dynamic process that encompasses several analytical platforms that include protein sequencing, structural or expression proteomics, protein modification, sub-cellular protein localization, protein-protein interaction and biological functional proteomics. In fact, expression proteomics is extensively applied in a majority of biomarker detection studies because it provides a detailed overview of differentially expressed proteins in cellular pathways and disease processes. Proteomics are also effective and dynamic in protein-protein interactions and cross-talks between interacting molecules of the cell. Proteomics has evolved into a crucial tool used to investigate the biochemical changes that possibly lead to development of cancer biomarkers. This review draws attention to the progress and advancements in cancer proteomics technology with the aim of simplifying the understanding of the mechanisms underlying the disease and to contribute to detection of biomarkers in addition to the development of novel treatments. Given that proteome is a dynamic entity of cellular functions in health and disease, it is capable of reflecting the immediate environmental state of cells and tissues as shown in this review. The review shows the possibility of elucidating the pathophysiology of acute myeloid leukaemia (AML) through proteome expressions, thus confirming the viability of proteome analysis in profiling AML.