2 resultados para 8-hydroxyquinolinate derivatives

em Bioline International


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To design and develop a new series of histone deacetylase inhibitors (FP1 - FP12) and evaluate their inhibitory activity against hydroxyacetamide (HDAC) enzyme mixture-derived HeLa cervical carcinoma cell and MCF-7. Methods: The designed molecules (FP1 - FP12) were docked using AUTODOCK 1.4.6. FP3 and FP8 showed higher interaction comparable to the prototypical HDACI. The designed series of 2-[[(3- Phenyl/substituted Phenyl-[4-{(4-(substituted phenyl)ethylidine-2-Phenyl-1,3-Imidazol-5-One}](-4H- 1,2,4-triazol-5-yl)sulfanyl]-N-hydroxyacetamide derivatives (FP1-FP12) was synthesized by merging 2- [(4-amino-3-phenyl-4H- 1, 2, 4-triazol-5-yl) sulfanyl]-N-hydroxyacetamide and 2-{[4-amino-3-(2- hydroxyphenyl)-4H-1,2, 4-triazol-5-yl]sulfanyl}-N hydroxyacetamide derivatives with aromatic substituted oxazolone. The biological activity of the synthesized molecule (FP1-FP12) was evaluated against HDAC enzyme mixture-derived HeLa cervical carcinoma cell and breast cancer cell line (MCF-7). Results: HDAC inhibitory activity of FP10 showed higher IC50 (half-maximal concentration inhibitory activity) of 0.09 μM, whereas standard SAHA molecule showed IC50 of 0.057 μM. On the other hand, FP9 exhibited higher GI50 (50 % of maximal concentration that inhibited cell proliferation) of 22.8 μM against MCF-7 cell line, compared with the standard, adriamycin, with GI50 of (-) 50.2 μM. Conclusion: Synthesis, spectral characterization, and evaluation of HDAC inhibition activity and in vitro anticancer evaluation of novel hydroxyacetamide derivatives against MCF-7 cell line have been achieved. The findings indicate the emergence of potentialanticancer compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To synthesize and characterize S-alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4- oxadiazole-5-thiol derivatives. Methods: 2-(1H-indol-3-yl)acetic acid (1) was reacted with absolute ethanol and catalytic amount of sulfuric acid to form ethyl 2-(1H-indol-3-yl)acetate (2) which was transformed to 2-(1H-indol-3- yl)acetohydrazide (3) by refluxing with hydrazine hydrate in methanol. Ring closure reaction of 3 with carbon disulfide and ethanolic potassium hydroxide yielded 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5- thiol (4) which was finally treated with alkyl/aralkyl halides (5a-u) in DMF and NaH to yield Salkylated/ aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiols (6a-u). Structural elucidation was done by IR, 1H-NMR and EI-MS techniques Results: 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol (4) was synthesized as the parent molecule and was characterized by IR and the spectrum showed peaks resonating at (cm-1) 2925 (Ar-H), 2250 (S-H ), 1593 (C=N ) and 1527 (Ar C=C ); 1H-NMR spectrum showed signals at δ 11.00 (s, 1H, NH-1ʹ), 7.49 ( br.d, J = 7.6 Hz, 1H, H-4\'), 7.37 (br.d, J = 8.0 Hz, 1H, H-7\'), 7.34 (br.s, 1H, H-2\'), 7.09 (t, J = 7.6 Hz, 1H, H-5\'), 7.00 (t, J = 7.6 Hz, 1H, H-6\') and 4.20 (s, 2H, CH2-10ʹ). EI-MS presented different fragments peaks at m/z 233 (C11H9N3OS)˙+ [M+2]+, 231 (C11H9N3OS)˙+ [M]+, 158 (C10H8NO)+, 156 (C10H8N2)˙+, 130 (C9H8N)+. The derivatives (6a-6u) were prepared and characterized accordingly. Conclusion: S-alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiols (6a-u) were successfully synthesized.