3 resultados para 5-38
em Bioline International
Resumo:
Background: Passive smokers are involuntarily exposed to cigarette or tobacco smoke and as known, inhalation of environmental tobacco smoke is a serious threat. There is little information about the effect of passive smoking on salivary markers and periodontal indices. Objectives: This study investigated the effect of passive smoking on lactoferrin and AST in 12 - 15 years old children and adolescents. Patients and Methods: This case-control analytic correlation type study with no-convenience random sampling method was performed on 160 children aged 12 - 15 who had smokers in their families. The eligible children were divided into two equal groups; 80 cot+ children as case group and 80 cot– children as control group, matched according to age, sex and plaque index. Plaque index was obtained from all subjects. 2 cc unstimulated salivary samples were collected by spitting method. The collected specimens were tested by lactoferrin and AST kits in biochemistry were measured on the day of sampling laboratory. Gingival index Loe and Silness (GI) and Probing Pocket Depth (PPD). Results: Mean and Standard Deviation of PPD and GI was 2.01 ± 0.077 and 1.53 ± 0.055 in experimental group and 1.93 ± 0.073 and 1.49 ± 0.046 in control group respectively (P < 0.001). The Mean and Standard Deviation parameters of lactoferrin and AST, in the experimental group was 38.66 ± 25.15 and 13.45 ± 6.33 and in the control group 10.18 ± 6.82 and 6.53 ± 2.65 group, respectively (P < 0.001). Conclusions: Passive smoking can be effective on inflammatory process of periodontal and salivary biomarkers related to inflammation. Lactoferrin was 11 - 104 in case group and 0.5 - 38 in control group. Aspartat aminotransferase in case group was 2.64 - 30.43 and in control group it was 2.16 - 12.02.
Resumo:
Purpose: To study the structure-activity relationships of synthetic multifunctional sulfides through evaluation of lipoxygenase and anti-bacterial activities. Methods: S-substituted derivatives of the parent compound 5-(1-(4-chlorophenylsulfonyl) piperidin-3- yl)-1, 3, 4-oxadiazole-2-thiol were synthesized through reaction with different saturated and unsaturated alkyl halides in DMF medium, with NaH catalyst. Spectral characterization of each derivative was carried out with respect to IR, 1H - NMR, 13C - NMR and EI - MS. The lipoxygenase inhibitory and antibacterial activities of the derivatives were determined using standard procedures. Results: Compound 5e exhibited higher lipoxygenase inhibitory potential than the standard (Baicalein®), with % inhibition of 94.71 ± 0.45 and IC50 of 20.72 ± 0.34 μmoles/L. Compound 5b showed significant antibacterial potential against all the bacterial strains with % inhibition ranging from 62.04 ± 2.78, 69.49 ± 0.41, 63.38 ± 1.97 and 59.70 ± 3.70 to 78.32 ± 0.41, while MIC ranged from 8.18 ± 2.00, 10.60 ± 1.83, 10.84 ± 3.00, 9.81 ± 1.86 and 11.73 ± 5.00 μmoles/L for S. typhi, E. coli, P. aeruginosa, B. subtilis and S. aureus, respectively. Compounds 5d, 5e and 5g showed good antibacterial activity against S. typhi and B. subtilis bacterial strains. Conclusion: The results suggest that compound 5e bearing n-pentyl group is a potent lipoxygenase inhibitor, while compound 5b with n-propyl substitution is a strong antibacterial agent. In addition, compounds 5d, 5e and 5g bearing n-butyl, n-pentyl and n-octyl groups, respectively, are good antibacterial agents against S. typhi and B. subtilis.
Resumo:
Purpose: To evaluate the antibacterial, enzyme-inhibitory and hemolytic activities of Salkylated/ aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol derivatives. Methods: Antibacterial activities of the compounds were evaluated using broth dilution method in 96 well plates. Enzyme inhibitory activities assays were investigated against α-glucosidase, butyrylcholinesterase (BchE) and lipoxygenase (LOX) using acarbose, eserine and baicalien as reference standards, respectively. A mixture of enzyme, test compound and the substrate was incubated and variation in absorbance noted before and after incubation. In tests for hemolytic activities, the compounds were incubated with red blood cells and variations in absorbance were used as indices their hemolytic activities. Results: The compounds were potent antibacterial agents. Five of them exhibited very good antibacterial potential similar to ciprofloxacin, and had minimum inhibitory concentrations (MIC) of at least 9.00 ± 4.12 μM against S. aureus, E.coli, and B. subtilis. One of the compounds had strong enzyme inhibitory potential against α-glucosidase, with IC50 of 17.11 ± 0.02 μg/mL which was better than that of standard acarbose (IC50 38.25 ± 0.12 μg/mL). Another compound had 1.5 % hemolytic activity. Conclusion: S-Alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol deviratives with valuable antibacterial, anti-enzymatic and hemolytic activities have been successfully synthesized. These compounds may be useful in the development of pharmaceutical products.