2 resultados para 15 term
em Bioline International
Resumo:
Objective: To evaluate the functional status of elderly residents in long-term institutions. Methods: Exploratory-descriptive study, developed in two long-term care institutions for the elderly (LTC), in city of Fortaleza, Ceará. The instruments utilized were: 1) Sociodemographic form, 2) Functional Independence Measure (FIM), and 3) International Classification of Functioning (ICF). Data was descriptively analyzed through the calculation of frequency, mean and standard deviation. Results: There was a predominance of males (n=47; 59.49%), with mean age of 74.58 (± 8.89) years, 68.35% (n=54) have been or are married, and 49.37% (n=39) are illiterate. In reference to the FIM, it was observed that the elderly perform the activities in a complete or modified mode and 18.99% (n=15) have difficulty climbing stairs. As to the association between the FIM and the ICF, in relation to self-care, it was seen that 96.20% (n=76) have no difficulty in performing tasks; 92.40% (n=73) move around without difficulty; and 98.73% (n=78) have preserved the cognition. In relation to the capacity of maintaining and controlling social interactions, all exhibit this domain preserved. Conclusion: The surveyed elderly presented good cognitive status and little dependence in activities regarding personal care, mobility and communication. The use of the ICF allows the visualization of the functionality scenario among the elderly, what can facilitate more effective health promotion strategies for this population.
Resumo:
Purpose: To investigate the effect of propofol on brain development in neonatal mice and long-term neurocognitive impact in adult mice. Method: The offspring of female C57Bl/6 and male CD-1 mice were administered propofol at concentrations of 2.5 and 5.0 mg/kg (treatment group) or normal saline (control) on postnatal day 7. Thereafter, histological and immunohistochemical examinations were performed on the mice brain. Apoptotic assay, neuronal nuclei antigen immunohistochemistry (to assess neuron density), and behavioral and neurocognitive tests were conducted on the adult mice. Results: Propofol induced cellular degeneration and apoptosis in the brains of neonatal mice. It also modulated physiological parameters (pH, PO2, glucose and lactate), among which decreased blood glucose might be associated with cellular degeneration in the brain. Propofol also caused long-term neuronal deficits in adults, which showed impaired neurocognitive functions. Upon reaching adulthood, propofol-treated mice showed slow learning response and poor memory compared to controls. Conclusion: Propofol causes neurodegeneration in neonatal mice and has long-term neurocognitive consequences in adults, indicating that the use of propofol anesthetics in neonates requires careful consideration.