8 resultados para xylem
em Digital Commons at Florida International University
Resumo:
Brazilian pepper (Schinus terebinthifolius) is an exotic shrub or small tree that has become well established as an invasive and highly competitive species through much of southern Florida. Love vine (Cassytha filiformis), a native parasitic plant, was noted parasitizing Brazilian pepper, apparently affecting its health. The objective of this study was to investigate the nature of this parasitic interaction in southern Florida. Brazilian pepper populations were studied to determine whether parasitism by love vine may affect growth and reproduction. Anatomical studies of love vine parasitizing Brazilian pepper determined physical aspects of the parasitic interaction at the cell and tissue level. Physiological aspects of this interaction were investigated to help describe love vine resource acquisition as a parasite on host Brazilian pepper plants, and as an autotrophic plant. An investigation of ecological aspects of this parasitic interaction was done to determine whether physical or biological aspects of habitats may contribute to love vine parasitism on Brazilian pepper. These studies indicated that: (1) parasitism by love vine significantly decreased growth and reproduction of Brazilian pepper plants; (2) anatomical and physiological investigations indicated that love vine was primarily a xylem parasite on Brazilian pepper, but that some assimilated carbon nutrients may also be acquired from the host; (3) love vine is autotrophic (i.e., hemiparasitic), but is totally dependent on its host for necessary resources; (4) the occurrence of love vine parasitism on Brazilian pepper is mediated by physical characters of the biological community. ^
Resumo:
Tropical rainforests account for more than a third of global net primary production and contain more than half of the global forest carbon. Though these forests are a disproportionately important component of the global carbon cycle, the relationship between rainforest productivity and climate remains poorly understood. Understanding the link between current climate and rainforest tree stem diameter increment, a major constituent of forest productivity, will be crucial to efforts at modeling future climate and rainforest response to climate change. This work reports the physiological and stem growth responses to micrometeorological and phenological states of ten species of canopy trees in a Costa Rican wet tropical forest at sub-annual time intervals. I measured tree growth using band dendrometers and estimated leaf and reproductive phenological states monthly. Electronic data loggers recorded xylem sap flow (an indicator of photosynthetic rate) and weather at half-hour intervals. An analysis of xylem sap flow showed that physiological responses were independent of species, which allowed me to construct a general model of weather driven sap flow rates. This model predicted more than eighty percent of climate driven sap flow variation. Leaf phenology influenced growth in three of the ten species, with two of these species showing a link between leaf phenology and weather. A combination of rainfall, air temperature, and irradiance likely provided the cues that triggered leaf drop in Dipteryx panamensis and Lecythis ampla. Combining the results of the sap flow model, growth, and the climate measures showed tree growth was correlated to climate, though the majority of growth variation remained unexplained. Low variance in the environmental variables and growth rates likely contributed to the large amount of unexplained variation. A simple model that included previous growth increment and three meteorological variables explained from four to nearly fifty percent of the growth variation. Significant growth carryover existed in six of the ten species, and rainfall was positively correlated to growth in eight of the ten species. Minimum nighttime temperature was also correlated to higher growth rates in five of the species and irradiance in two species. These results indicate that tropical rainforest tree trunks could act as carbon sinks if future climate becomes wetter and slightly warmer. ^
Resumo:
Equisetum giganteum L., a giant horsetail, is one of the largest living members of an ancient group of non-flowering plants with a history extending back 377 million years. Its hollow upright stems grow to over 5 m in height. Equisetum giganteum occupies a wide range of habitats in southern South America. Colonies of this horsetail occupy large areas of the Atacama river valleys, including those with sufficiently high groundwater salinity to significantly reduce floristic diversity. The purpose of this research was to study the ecophysiological and biomechanical properties that allow E. giganteum to successfully colonize a range of habitats, varying in salinity and exposure. Stem ecophysiological behavior was measured via steady state porometry (stomatal conductance), thermocouple psychrometry (water potential), chlorophyll fluorescence, and ion specific electrodes (xylem fluid solutes). Stem biomechanical properties were measured via a 3-point bending apparatus and cross sectional imaging. Equisetum giganteum stems exhibit mechanical characteristics of semi-self-supporting plants, requiring mutual support or support of other vegetation when they grow tall. The mean elastic moduli (4.3 Chile, 4.0 Argentina) of E. giganteum in South America is by far the largest measured in any living horsetail. Stomatal behavior of E. giganteum is consistent with that of typical C3 vascular plants, although absolute values of maximum late morning stomatal conductance are very low in comparison to typical plants from mesic habitats. The internode stomata exhibit strong light response. However, the environmental sensitivity of stomatal conductance appeared less in young developing stems, possibly due to higher cuticular conductance. Exclusion of sodium (Na) and preferential accumulation of potassium (K) at the root level appears to be the key mechanism of salinity tolerance in E. giganteum. Overall stomatal conductance and chlorophyll fluorescence were little affected by salinity, ranging from very low levels up to half strength seawater. This suggests a high degree of salinity stress tolerance. The capacity of E. giganteum to adapt to a wide variety of environments in southern South America has allowed it to thrive despite tremendous environmental changes during their long tenure on Earth.
Resumo:
The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (δ 18O) was enriched (4.8 ± 0.2‰) in the DS relative to the WS (0.0 ± 0.1‰), but groundwater δ 18O remained constant between seasons (DS: 2.2 ± 0.4‰; WS: 2.1 ± 0.1‰). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil–groundwater mix (δ 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on δ 18O data, the roots of R. mangle roots were exposed to salinities of 25.4 ± 1.4 PSU, less saline than either C. jamaicense(39.1 ± 2.2 PSU) or S. portulacastrum (38.6 ± 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to global sea level rise and human-induced changes in freshwater flows.
Resumo:
Schinus terebinthifolius Raddi (Schinus) is one of the most widely found woody exotic species in South Florida. This exotic is distributed across environments with different hydrologic regimes, from upland pine forests to the edges of sawgrass marshes and into saline mangrove forests. To determine if this invasive exotic had different physiological attributes compared to native species in a coastal habitat, we measured predawn xylem water potentials (Ψ), oxygen stable isotope signatures (δ18O), and sodium (Na+) and potassium (K+) contents of sap water from plants within: (1) a transition zone (between a mangrove forest and upland pineland) and (2) an upland pineland in Southwest Florida. Under dynamic salinity and hydrologic conditions, Ψ of Schinus appeared less subject to fluctuations caused by seasonality when compared with native species. Although stem water δ18O values could not be used to distinguish the depth of Schinus and native species' water uptake in the transition zone, Ψ and sap Na+/K+ patterns showed that Schinus was less of a salt excluder relative to the native upland species during the dry season. This exotic also exhibited Na+/K+ ratios similar to the mangrove species, indicating some salinity tolerance. In the upland pineland, Schinus water uptake patterns were not significantly different from those of native species. Differences between Schinus and native upland species, however, may provide this exotic an advantage over native species within mangrove transition zones.
Resumo:
The purpose of this work is to increase ecological understanding of Avicennia germinans L. and Laguncularia racemosa (L.) Gaertn. F. growing in hypersaline habitats with a seasonal climate. The area has a dry season (DS) with low temperature and vapour pressure deficit (vpd), and a wet season (WS) with high temperature and slightly higher vpd. Seasonal patterns in interstitial soil water salinity suggested a lack of tidal flushing in this area to remove salt along the soil profile. The soil solution sodium/potassium (Na+/K+) ratio differed slightly along the soil profile during the DS, but during the WS it was significantly higher at the soil surface. Diurnal changes in xylem osmolality between predawn (higher) and midday (lower) were observed in both species. However, A. germinans had higher xylem osmolality compared to L. racemosa. Xylem Na+/K+ suggested higher selectivity of K+ over Na+ in both species and seasons. The water relations parameters derived from pressure–volume P–V curves were relatively stable between seasons for each species. The range of water potentials (Ψ), measured in the field, was within estimated values for turgor maintenance from P–V curves. Thus the leaves of both species were osmotically adapted to maintain continued water uptake in this hypersaline mangrove environment.
Resumo:
Brazilian pepper (Schinus terebinthifolius) is an exotic shrub or small tree that has become well established as an invasive and highly competitive species through much of southern Florida. Love vine (Cassytha filiformis), a native parasitic plant, was noted parasitizing Brazilian pepper, apparently affecting its health. The objective of this study was to investigate the nature of this parasitic interaction in southern Florida. Brazilian pepper populations were studied to determine whether parasitism by love vine may affect growth and reproduction. Anatomical studies of love vine parasitizing Brazilian pepper determined physical aspects of the parasitic interaction at the cell and tissue level. Physiological aspects of this interaction were investigated to help describe love vine resource acquisition as a parasite on host Brazilian pepper plants, and as an autotrophic plant. An investigation of ecological aspects of this parasitic interaction was done to determine whether physical or biological aspects of habitats may contribute to love vine parasitism on Brazilian pepper. These studies indicated that: 1) parasitism by love vine significantly decreased growth and reproduction of Brazilian pepper plants; 2) anatomical and physiological investigations indicated that love vine was primarily a xylem parasite on Brazilian pepper, but that some assimilated carbon nutrients may also be acquired from the host; 3) love vine is autotrophic (i. e., hemiparasitic), but is totally dependent on its host for necessary resources; 4) the occurrence of love vine parasitism on Brazilian pepper is mediated by physical characters of the biological community.
Resumo:
Equisetum giganteum L., a giant horsetail, is one of the largest living members of an ancient group of non-flowering plants with a history extending back 377 million years. Its hollow upright stems grow to over 5 m in height. Equisetum giganteum occupies a wide range of habitats in southern South America. Colonies of this horsetail occupy large areas of the Atacama river valleys, including those with sufficiently high groundwater salinity to significantly reduce floristic diversity. The purpose of this research was to study the ecophysiological and biomechanical properties that allow E. giganteum to successfully colonize a range of habitats, varying in salinity and exposure. Stem ecophysiological behavior was measured via steady state porometry (stomatal conductance), thermocouple psychrometry (water potential), chlorophyll fluorescence, and ion specific electrodes (xylem fluid solutes). Stem biomechanical properties were measured via a 3-point bending apparatus and cross sectional imaging. Equisetum giganteum stems exhibit mechanical characteristics of semi-self-supporting plants, requiring mutual support or support of other vegetation when they grow tall. The mean elastic moduli (4.3 Chile, 4.0 Argentina) of E. giganteum in South America is by far the largest measured in any living horsetail. Stomatal behavior of E. giganteum is consistent with that of typical C3 vascular plants, although absolute values of maximum late morning stomatal conductance are very low in comparison to typical plants from mesic habitats. The internode stomata exhibit strong light response. However, the environmental sensitivity of stomatal conductance appeared less in young developing stems, possibly due to higher cuticular conductance. Exclusion of sodium (Na) and preferential accumulation of potassium (K) at the root level appears to be the key mechanism of salinity tolerance in E. giganteum. Overall stomatal conductance and chlorophyll fluorescence were little affected by salinity, ranging from very low levels up to half strength seawater. This suggests a high degree of salinity stress tolerance. The capacity of E. giganteum to adapt to a wide variety of environments in southern South America has allowed it to thrive despite tremendous environmental changes during their long tenure on Earth.