4 resultados para woven fabrics
em Digital Commons at Florida International University
Resumo:
The purpose of this study was to explore the attitudes, beliefs, and practices of community college professors regarding education for sustainable development (ESD). In-depth interviews with 14 professors from different disciplines were conducted. The participants taught at Miami Dade College, Florida, a Talloires Declaration signatory since 2006, and all had attended Green Studies professional development workshops. Written documents such as assignments and samples of student work were used for triangulation. The annual report of the college’s Earth Ethics Institute and its Web site served as additional sources. The interviews were recorded, transcribed, and analyzed for common themes. The Talloires Declaration’s 10-point action plan and the key characteristics of ESD (UN DESD, 2006) served as the conceptual framework. The study found that the professors considered ESD an essential issue. The majority discussed the economic and social aspects of ESD; however, the environmental aspect was mentioned most frequently. The professors’ conceptualizations of ESD were influenced by their experiences and evidenced by the metaphors they used. Although their engagement with ESD differed, the professors expressed optimism toward ESD related teaching and learning. They regarded ESD as compatible with their subjects, and most had already been infusing sustainability into their courses or planned to do so. Additionally, the participants’ teaching practices reflected many of the characteristics of ESD. Even though the professors considered ESD challenging, they believed that they could make contributions to the college’s effort. The metaphor of “Planting a Seed” was frequently used to describe this holistic approach. The study also found that many professors regarded interpersonal relationships and communication significant factors for the advancement of ESD. The participants described several challenges to integrating ESD at their college. These related to time constraints, density of curriculum, institutional size and fragmentation, dearth of administrative support and incentives, students’ lack of academic preparation and sustainability awareness, students’ inability to focus on ESD because of personal, social, or economic circumstances, and professors’ frustration about a divisive atmosphere as a result of their engagement with sustainability. Despite these obstacles, the professors believed that ESD could be successfully woven into the community college experience.
Resumo:
Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.
Resumo:
Mothers of Sparta is a collection of thirteen personal essays that examine place—knowing one’s place, and finding one’s place in the world. The narrative arc chronicles the narrator’s childhood, young adulthood, marriage and child rearing years, ultimately encompassing the difficulties of raising a child who, due to brain damage, faces an uncertain future. As the narrator grows older, place shifts from a concrete knowledge of the physical world around her, to learning her place within gendered and regional social constructs, and defining her place through roles such as wife, mother, student and writer. These essays are diverse in style. Woven throughout is a theme of violence, weighted with visceral language: the violence of accident and death, the violence that occurs in nature and in domestic spaces, and the violence that often goes unnoticed because we live in a violent world.
Resumo:
Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.