4 resultados para working-correlation-structure
em Digital Commons at Florida International University
Resumo:
Since the seminal works of Markowitz (1952), Sharpe (1964), and Lintner (1965), numerous studies on portfolio selection and performance measure have been based upon the mean-variance framework. However, several researchers (e.g., Arditti (1967, and 1971), Samuelson (1970), and Rubinstein (1973)) argue that the higher moments cannot be neglected unless there is reason to believe that: (i) the asset returns are normally distributed and the investor's utility function is quadratic, or (ii) the empirical evidence demonstrates that higher moments are irrelevant to the investor's decision. Based on the same argument, this dissertation investigates the impact of higher moments of return distributions on three issues concerning the 14 international stock markets.^ First, the portfolio selection with skewness is determined using: the Polynomial Goal Programming in which investor preferences for skewness can be incorporated. The empirical findings suggest that the return distributions of international stock markets are not normally distributed, and that the incorporation of skewness into an investor's portfolio decision causes a major change in the construction of his optimal portfolio. The evidence also indicates that an investor will trade expected return of the portfolio for skewness. Moreover, when short sales are allowed, investors are better off as they attain higher expected return and skewness simultaneously.^ Second, the performance of international stock markets are evaluated using two types of performance measures: (i) the two-moment performance measures of Sharpe (1966), and Treynor (1965), and (ii) the higher-moment performance measures of Prakash and Bear (1986), and Stephens and Proffitt (1991). The empirical evidence indicates that higher moments of return distributions are significant and relevant to the investor's decision. Thus, the higher moment performance measures should be more appropriate to evaluate the performances of international stock markets. The evidence also indicates that various measures provide a vastly different performance ranking of the markets, albeit in the same direction.^ Finally, the inter-temporal stability of the international stock markets is investigated using the Parhizgari and Prakash (1989) algorithm for the Sen and Puri (1968) test which accounts for non-normality of return distributions. The empirical finding indicates that there is strong evidence to support the stability in international stock market movements. However, when the Anderson test which assumes normality of return distributions is employed, the stability in the correlation structure is rejected. This suggests that the non-normality of the return distribution is an important factor that cannot be ignored in the investigation of inter-temporal stability of international stock markets. ^
Resumo:
The strong couplings between different degrees of freedom are believed to be responsible for novel and complex phenomena discovered in transition metal oxides (TMOs). The physical complexity is directly responsible for their tunability. Creating surfaces/interfaces add an additional ' man-made' twist, approaching the quantum phenomena of correlated materials. ^ The dissertation focused on the structural and electronic properties in proximity of surface of three prototype TMO compounds by using three complementary techniques: scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and low energy electron diffraction, particularly emphasized the effects of broken symmetry and imperfections like defects on the coupling between charge and lattice degrees of freedom. ^ Ca1.5Sr0.5RuO4 is a layered ruthenate with square lattice and at the boundary of magnetic/orbital instability in Ca2-xSrxRuO4. That the substitution of Sr 2+ with Ca2+ causing RuO6 rotation narrows the dxy band width and changes the Fermi surface topology. Particularly, the γ(dxy) Fermi surface sheet exhibited hole-like in Ca1.5Sr0.5RuO4 in contrast to electron-like in Sr2RuO4, showing a strong charge-lattice coupling. ^ Na0.75CoO2 is a layered cobaltite with triangular lattice exhibiting extraordinary thermoelectric properties. The well-ordered CoO2-terminated surface with random Na distribution was observed. However, lattice constants of the surface are smaller than that in bulk. The surface density of states (DOS) showed strong temperature dependence. Especially, an unusual shift of the minimum DOS occurs below 230 K, clearly indicating a local charging effect on the surface. ^ Cd2Re2O7 is the first known pyrochlore oxide superconductor (Tc ∼ 1K). It exhibited an unusual second-order phase transition occurring at TS1 = 200 K and a controversial first-order transition at TS2 = 120 K. While bulk properties display large anomalies at TS1 but rather subtle and sample-dependent changes at TS2, the surface DOS near the EF show no change at T s1 but a substantial increase below TS2---a complete reversal as the signature for the transitions. We argued that crystal imperfections, mainly defects, which were considerably enhanced at the surface, resulted in the transition at TS2. ^
Resumo:
Genetic diversity can be used to describe patterns of gene flow within and between local and regional populations. The Florida Everglades experiences seasonal fluctuations in water level that can influence local population extinction and recolonization dynamics. In addition, this expansive wetland has been divided into water management regions by canals and levees. These combined factors can affect genetic diversity and population structure of aquatic organisms in the Everglades. We analyzed allelic variation at six DNA microsatellite loci to examine the population structure of spotted sunfish (Lepomis punctatus) from the Everglades. We tested the hypothesis that recurrent local extinction and recent regional divisions have had an effect on patterns of genetic diversity. No marked differences were observed in comparisons of the heterozygosity values of sites within and among water management units. No evidence of isolation by distance was detected in a gene flow and distance correlation between subpopulations. Confidence intervals for the estimated F-statistic values crossed zero, indicating that there was no significant genetic difference between subpopulations within a region or between regions. Notably, the genetic variation among subpopulations in a water conservation area was greater than variation among regions (Fsp>FPT). These data indicate that the spatial scale of recolonization following local extinction appears to be most important within water management units.
Resumo:
Hydrophobicity as measured by Log P is an important molecular property related to toxicity and carcinogenicity. With increasing public health concerns for the effects of Disinfection By-Products (DBPs), there are considerable benefits in developing Quantitative Structure and Activity Relationship (QSAR) models capable of accurately predicting Log P. In this research, Log P values of 173 DBP compounds in 6 functional classes were used to develop QSAR models, by applying 3 molecular descriptors, namely, Energy of the Lowest Unoccupied Molecular Orbital (ELUMO), Number of Chlorine (NCl) and Number of Carbon (NC) by Multiple Linear Regression (MLR) analysis. The QSAR models developed were validated based on the Organization for Economic Co-operation and Development (OECD) principles. The model Applicability Domain (AD) and mechanistic interpretation were explored. Considering the very complex nature of DBPs, the established QSAR models performed very well with respect to goodness-of-fit, robustness and predictability. The predicted values of Log P of DBPs by the QSAR models were found to be significant with a correlation coefficient R2 from 81% to 98%. The Leverage Approach by Williams Plot was applied to detect and remove outliers, consequently increasing R 2 by approximately 2% to 13% for different DBP classes. The developed QSAR models were statistically validated for their predictive power by the Leave-One-Out (LOO) and Leave-Many-Out (LMO) cross validation methods. Finally, Monte Carlo simulation was used to assess the variations and inherent uncertainties in the QSAR models of Log P and determine the most influential parameters in connection with Log P prediction. The developed QSAR models in this dissertation will have a broad applicability domain because the research data set covered six out of eight common DBP classes, including halogenated alkane, halogenated alkene, halogenated aromatic, halogenated aldehyde, halogenated ketone, and halogenated carboxylic acid, which have been brought to the attention of regulatory agencies in recent years. Furthermore, the QSAR models are suitable to be used for prediction of similar DBP compounds within the same applicability domain. The selection and integration of various methodologies developed in this research may also benefit future research in similar fields.