3 resultados para water recovery

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004-2005. Dry season CO2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007-2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest-atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research makes clear that much of the Everglade’s flora and fauna have evolved to tolerate or require frequent fires. Nevertheless, restoration of the Everglades has thus far been conceptualized as primarily a water reallocation project. These two forces are directly linked by the influence of water flows on fire fuel moisture content, and are indirectly linked through a series of complex feedback loops. This interaction is made more complex by the alteration and compartmentalization of current water flows and fire regimes, the lack of communication between water and fire management agencies, and the already imperiled state of many local species. It is unlikely, therefore, that restoring water flows will automatically restore the appropriate fire regimes, leaving the prospect of successful restoration in some doubt. The decline of the Cape Sable seaside sparrow, and its potential for recovery, illustrates the complexity of the situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In August 1997, a large aggregation of the common sea urchin, Lytechinus variegatus, was discovered moving southward through a lush and productive seagrass monoculture of Syringodium filiforme in the Florida Keys, FL. Sea urchin densities at the grazing front were greater than 300 individuals m−2 which resulted in the overgrazing of seagrasses and a complete denuding of all vegetation from this area. The steady rate of the grazing front migration permitted the estimation of the time since disturbance for any point behind this grazing front allowing the use of a chronosequence approach to investigate the processes early on in succession of these communities. In May 1999, six north-south parallel transects were established across the disturbed seagrass communities and into the undisturbed areas south of the grazing front. Based on the measured rates of the migration of the grazing front, we grouped 60 sites into five categories (disturbed, recently grazed, active grazing front, stressed and undisturbed). The large scale loss of seagrass biomass initiated community-wide cascading effects that significantly altered resource regimes and species diversity. The loss of the seagrass canopy and subsequent death and decay of the below-ground biomass resulted in a de-stabilization of the sediments. As the sediments were eroded into the water column, turbidity significantly increased, reducing light availability and significantly reducing the sediment nitrogen pool and depleting the seed bank. The portion of the chronosequence that has had the longest period of recovery now consists of a mixed community of seagrass and macroalgae, as remnant survivors and quick colonizers coexist and jointly take advantage of the open space.