81 resultados para water quality

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rwanda is a landlocked country located in Africa's Central-East Great Lakes region. It has a population of 7.5 million which occupies 26,338 km'. Its population density (285/km') is one of the highest in the world and has prompted fear of a rapid degradation of the ecosystem. There are no central sewer systems in Rwanda. The use of pit latrines and septic tanks is common in urban and rural areas. People still defecate in the fields (World Bank, 1989). Less than half of the urban population is served by a central water supply. The majority of people get their water untreated from rivers that have been polluted by chemicals and human excreta. In and around the capital city of Kigali, there is a concentration of people, farms, and industries which discharge wastewater into the Nyabarongo River and its tributaries. The Nyabarongo River, a tributary of the Nile, empties into the Akagera River which flows into Lake Victoria. Nyabarongo River water is used for drinking water, cooking, bathing, and agriculture in the Kigali area. There has been very little monitoring of the water quality of the Nyabarongo River and of industrial outfalls located on tributaries of the Nyabarongo River. As a first step in understanding the water quality of the Nyabarongo River, wastewater samples were collected in 1993 from industrial outfalls located on tributaries of the Nyabarongo River. Most of the facilities sampled had no wastewater treatment. The impact of these discharges on the water quality of the Nyabarongo River was evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to develop a model to predict transport and fate of gasoline components of environmental concern in the Miami River by mathematically simulating the movement of dissolved benzene, toluene, xylene (BTX), and methyl-tertiary-butyl ether (MTBE) occurring from minor gasoline spills in the inter-tidal zone of the river. Computer codes were based on mathematical algorithms that acknowledge the role of advective and dispersive physical phenomena along the river and prevailing phase transformations of BTX and MTBE. Phase transformations included volatilization and settling. ^ The model used a finite-difference scheme of steady-state conditions, with a set of numerical equations that was solved by two numerical methods: Gauss-Seidel and Jacobi iterations. A numerical validation process was conducted by comparing the results from both methods with analytical and numerical reference solutions. Since similar trends were achieved after the numerical validation process, it was concluded that the computer codes algorithmically were correct. The Gauss-Seidel iteration yielded at a faster convergence rate than the Jacobi iteration. Hence, the mathematical code was selected to further develop the computer program and software. The model was then analyzed for its sensitivity. It was found that the model was very sensitive to wind speed but not to sediment settling velocity. ^ A computer software was developed with the model code embedded. The software was provided with two major user-friendly visualized forms, one to interface with the database files and the other to execute and present the graphical and tabulated results. For all predicted concentrations of BTX and MTBE, the maximum concentrations were over an order of magnitude lower than current drinking water standards. It should be pointed out, however, that smaller concentrations than the latter reported standards and values, although not harmful to humans, may be very harmful to organisms of the trophic levels of the Miami River ecosystem and associated waters. This computer model can be used for the rapid assessment and management of the effects of minor gasoline spills on inter-tidal riverine water quality. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altered freshwater inflows have affected circulation, salinity, and water quality patterns of Florida Bay, in turn altering the structure and function of this estuary. Changes in water quality and salinity and associated loss of dense turtle grass and other submerged aquatic vegetation (SAV) in Florida Bay have created a condition in the bay where sediments and nutrients have been regularly disturbed, frequently causing large and dense phytoplankton blooms. These algal and cyanobacterial blooms in turn often cause further loss of more recently established SAV, exacerbating the conditions causing the blooms. Chlorophyll a (CHLA) was selected as an indicator of water quality because it is an indicator of phytoplankton biomass, with concentrations reflecting the integrated effect of many of the water quality factors that may be altered by restoration activities. Overall, we assessed the CHLA indicator as being (1) relevant and reflecting the state of the Florida Bay ecosystem, (2) sensitive to ecosystem drivers (stressors, especially nutrient loading), (3) feasible to monitor, and (4) scientifically defensible. Distinct zones within the bay were defined according to statistical and consensual information. Threshold levels of CHLA for each zone were defined using historical data and scientific consensus. A presentation template of condition of the bay using these thresholds is shown as an example of an outreach product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical coastal marine ecosystems including mangroves, seagrass beds and coral reef communities are undergoing intense degradation in response to natural and human disturbances, therefore, understanding the causes and mechanisms present challenges for scientist and managers. In order to protect our marine resources, determining the effects of nutrient loads on these coastal systems has become a key management goal. Data from monitoring programs were used to detect trends of macroalgae abundances and develop correlations with nutrient availability, as well as forecast potential responses of the communities monitored. Using eight years of data (1996–2003) from complementary but independent monitoring programs in seagrass beds and water quality of the Florida Keys National Marine Sanctuary (FKNMS), we: (1) described the distribution and abundance of macroalgae groups; (2) analyzed the status and spatiotemporal trends of macroalgae groups; and (3) explored the connection between water quality and the macroalgae distribution in the FKNMS. In the seagrass beds of the FKNMS calcareous green algae were the dominant macroalgae group followed by the red group; brown and calcareous red algae were present but in lower abundance. Spatiotemporal patterns of the macroalgae groups were analyzed with a non-linear regression model of the abundance data. For the period of record, all macroalgae groups increased in abundance (Abi) at most sites, with calcareous green algae increasing the most. Calcareous green algae and red algae exhibited seasonal pattern with peak abundances (Φi) mainly in summer for calcareous green and mainly in winter for red. Macroalgae Abi and long-term trend (mi) were correlated in a distinctive way with water quality parameters. Both the Abi and mi of calcareous green algae had positive correlations with NO3−, NO2−, total nitrogen (TN) and total organic carbon (TOC). Red algae Abi had a positive correlation with NO2−, TN, total phosphorus and TOC, and the mi in red algae was positively correlated with N:P. In contrast brown and calcareous red algae Abi had negative correlations with N:P. These results suggest that calcareous green algae and red algae are responding mainly to increases in N availability, a process that is happening in inshore sites. A combination of spatially variable factors such as local current patterns, nutrient sources, and habitat characteristics result in a complex array of the macroalgae community in the seagrass beds of the FKNMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial and temporal distributions of the epiphytic diatom flora on Thalassia testudinum was described within the Florida Bay estuary and at one Atlantic site east of the Florida Keys over a 1-year period. Species of the genus Mastogloia dominated the epiphytic diatom flora (82 out of 332 total species). Nonmetric Multidimensional Scaling (NMDS) and Analysis of Similarity (ANOSIM) revealed four distinct spatial assemblages and two temporal assemblages. Eastern and western Florida Bay assemblages were identified within the estuary. The eastern diatom assemblage was characterized by high relative abundances of Brachysira aponina and Nitzschia liebetruthii, while the western assemblage was characterized by the abundance of Reimerothrix floridensis, particularly during summer. Two diverse and distinct marine assemblages, one located in the Gulf of Mexico along the western edge of Florida Bay and the other behind the Florida reef tract in the Atlantic Ocean, were also identified. Analysis of the spatial distribution of diatoms and water quality characteristics within Florida Bay suggest that these assemblages may be structured by salinity and nutrient availability, particularly P. The Gulf of Mexico and the western Florida Bay assemblages were associated with higher water column salinities and TP concentrations and lower DIN concentrations and TN:TP ratios relative to the eastern Florida Bay assemblage. The temporal variation in diatom assemblages was associated with water temperature, though temporal indicator species were few relative to the number of spatial indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive data sets on water quality and seagrass distributions in Florida Bay have been assembled under complementary, but independent, monitoring programs. This paper presents the landscape-scale results from these monitoring programs and outlines a method for exploring the relationships between two such data sets. Seagrass species occurrence and abundance data were used to define eight benthic habitat classes from 677 sampling locations in Florida Bay. Water quality data from 28 monitoring stations spread across the Bay were used to construct a discriminant function model that assigned a probability of a given benthic habitat class occurring for a given combination of water quality variables. Mean salinity, salinity variability, the amount of light reaching the benthos, sediment depth, and mean nutrient concentrations were important predictor variables in the discriminant function model. Using a cross-validated classification scheme, this discriminant function identified the most likely benthic habitat type as the actual habitat type in most cases. The model predicted that the distribution of benthic habitat types in Florida Bay would likely change if water quality and water delivery were changed by human engineering of freshwater discharge from the Everglades. Specifically, an increase in the seasonal delivery of freshwater to Florida Bay should cause an expansion of seagrass beds dominated by Ruppia maritima and Halodule wrightii at the expense of the Thalassia testudinum-dominated community that now occurs in northeast Florida Bay. These statistical techniques should prove useful for predicting landscape-scale changes in community composition in diverse systems where communities are in quasi-equilibrium with environmental drivers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Florida Bay is a unique subtropical estuary that while historically oligotrophic, has been subjected to both natural and anthropogenic stressors, including hurricanes, coastal eutrophication and other impacts. These stressors have resulted in degradation of water quality in the past several decades, most evidenced by reoccurring blooms of the picocyanobacterium Synechococcus spp. Major nutrient inputs consist of freshwater flows to the eastern region from runoff and regulated canal releases, inputs from the Everglades to the central region via Taylor Slough, exchanges with the Gulf of Mexico, which include intermittent Shark River inputs to the western region, stormwater and wastewater from the Florida Keys, and atmospheric deposition. These nutrient inputs have resulted in a transition from strong phosphorus (P) limitation of phytoplankton in the eastern bay to nitrogen (N) limitation in the western bay. Large blooms of Synechococcus were most pronounced in the central bay region, in the area of transition between P and N limitation, in the mid-1990s. Although non-toxic, these blooms, which have continued intermittently through the early 2000s, resulted in significant sea-grass and benthic organism mortalities. A new suite of stressors in 2005, including the passages of Hurricanes Katrina, Rita, and Wilma, additional canal releases, and the initiation of road construction to widen the main roadway leading to the Keys, were correlated with a large Synechococcus bloom in the previously clear, strongly P- limited, northeastern region of the bay. Sustained for 3 years, this bloom was accompanied by a shift from P limitation to N limitation during its course. Nutrient bioassay experiments suggest that this bloom persisted due to the ability of Synechococcus to access organic N and P sources, microbial and geochemical cycling of organic and inorganic nutrients in the water column and between the water column and sediments (both suspended particles and benthos), and decreased grazing by benthic fauna due to their die-off.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Everglades periphyton mats are tightly-coupled autotrophic (algae and cyanobacteria) and heterotrophic (eubacteria, fungi and microinvertebrates) microbial assemblages. We investigated the effect of water column total phosphorus and nitrogen concentrations, water depth and hydroperiod on periphyton of net production, respiration, nutrient content, and biomass. Our study sites were located along four transects that extended southward with freshwater sheetflow through sawgrass-dominated marsh. The water source for two of the transects were canal-driven and anchored at canal inputs. The two other transects were rain-driven (ombrotrophic) and began in sawgrass-dominated marsh. Periphyton dynamics were examined for upstream and downstream effects within and across the four transects. Although all study sites were characterized as short hydroperiod and phosphorus-limited oligotrophic, they represent gradients of hydrologic regime, water source and water quality of the southern Everglades. Average periphyton net production of 1.08 mg C AFDW−1 h−1 and periphyton whole system respiration of 0.38 mg C AFDW−1 h−1 rates were net autotrophic. Biomass was generally highest at ombrotrophic sites and sites downstream of canal inputs. Mean biomass over all our study sites was high, 1517.30 g AFDW m−2. Periphyton was phosphorus-limited. Average periphyton total phosphorus content was 137.15 μg P g−1 and average periphyton total N:P ratio was 192:1. Periphyton N:P was a sensitive indicator of water source. Even at extremely low mean water total phosphorus concentrations ( ≤ 0.21 μmol l−1), we found canal source effects on periphyton dynamics at sites adjacent to canal inputs, but not downstream of inflows. These canal source effects were most pronounced at the onset of wet season with initial rewetting. Spatial and temporal variability in periphyton dynamics could not solely be ascribed to water quality, but was often associated with both hydrology and water source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limestone-based (karstic) freshwater wetlands of the Everglades, Belize, Mexico, and Jamaica are distinctive in having a high biomass of CaCO3-rich periphyton mats. Diatoms are common components of these mats and show predictable responses to environmental variation, making them good candidates for assessing nutrient enrichment in these naturally ultraoligotrophic wetlands. However, aside from in the Everglades of southern Florida, very little research has been done to document the diatoms and their environmental preferences in karstic Caribbean wetlands, which are increasingly threatened by eutrophication. We identified diatoms in periphyton mats collected during wet and dry periods from the Everglades and similar freshwater karstic wetlands in Belize, Mexico, and Jamaica. We compared diatom assemblage composition and diversity among locations and periods, and the effect of the limiting nutrient, P, on species composition among locations. We used periphyton-mat total P (TP) as a metric of availability. A total of 176 diatom species in 45 genera were recorded from the 4 locations. Twenty-three of these species, including 9 that are considered indicative of Everglades diatom flora, were found in all 4 locations. In Everglades and Caribbean sites, we identified assemblages and indicator species associated with low and high periphyton-mat TP and calculated TP optima and tolerances for each indicator species. TP optima and tolerances of indicator species differed between the Everglades and the Caribbean, but weighted averaging models predicted periphyton-mat TP concentrations from diatom assemblages at Everglades (R2  =  0.56) and Caribbean (R2  =  0.85) locations. These results show that diatoms can be effective indicators of water quality in karstic wetlands of the Caribbean, but application of regionally generated transfer functions to distant sites provides less reliable estimates than locally developed functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern Everglades Water Conservation Areas have experienced recent ecological shifts in primary producer community structure involving marl periphyton mats and dense Typha-dominated macrophyte stands. Multiple investigations have identified phosphorus (P) as a driver of primary producer community structure, but effects of water impoundment beginning in the 1950s and changes in water hardness [e.g., (CaCO3)] have also been identified as a concern. In an effort to understand pre-1950, primary producer community structure and identify community shifts since 1950, we measured pigment proxies on three sediment cores collected in Water Conservation Area-2A (WCA-2A) along a phosphorus enrichment gradient. Photosynthetic pigments, sediment total phosphorus content (TP), organic matter, total organic carbon and nitrogen were used to infer historic primary producer communities and changes in water quality and hydrology regulating those communities. Excess 210Pb was used to establish historic dates for the sediment cores. Results indicate the northern area of WCA-2A increased marl deposition and increased algal abundance ca. 1920. This increase in (presumably) calcareous periphyton before intensive agriculture and impoundment suggest canal-derived calcium inputs and to some extent early drainage effects played a role in initiating this community shift. The northern area community then shifted to Typha dominance around 1965. The areas to the south in WCA-2A experienced increased marl deposition and algal abundance around or just prior to 1950s impoundment, the precise timing limited by core age resolution. Continued increases in algal abundance were evident after 1950, coinciding with impoundment and deepening of canals draining into WCA-2A, both likely increasing water mineral and nutrient concentrations. The intermediate site developed a Typha-dominated community ca. 1995 while the southern-most core site WCA-2A has yet to develop Typha dominance. Numerous studies link sediment TP >650 mg P/kg to marsh habitat degradation into Typha-dominance. The northern and intermediate cores where Typha is currently support this previous research by showing a distinct shift in the sediment record to Typha dominance corresponding to sediment TP between 600 and 700 mg P/kg. These temporal and spatial differences are consistent with modern evidence showing water-column gradients in mineral inputs (including Ca, carbonates, and phosphorus) altering primary producer community structure in WCA-2A, but also suggest hydroperiod has an effect on the mechanisms regulating periphyton development and Typha dominance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report summarizes the existing data from the FIU Coastal Water Quality Monitoring Network for calendar year January 1 – December 31, 2007. This includes water quality data collected from 28 stations in Florida Bay, 22 stations in Whitewater Bay, 25 stations in Ten Thousand Islands, 25 stations in Biscayne Bay, 49 stations on the Southwest Florida Shelf (Shelf), and 28 stations in the Cape Romano-Pine Island Sound area. Each of the stations in Florida Bay were monitored on a monthly basis with monitoring beginning in March 1991; Whitewater Bay monitoring began in September 1992; Biscayne Bay monthly monitoring began September 1993; the SW Florida Shelf was sampled quarterly beginning in spring 1995; and monthly sampling in the Cape Romano-Pine Island Sound area started January 1999.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report summarizes the existing data from the FIU Coastal Water Quality Monitoring Network for calendar year January 1 – December 31, 2007. This includes water quality data collected from 28 stations in Florida Bay, 22 stations in Whitewater Bay, 25 stations in Ten Thousand Islands, 25 stations in Biscayne Bay, 49 stations on the Southwest Florida Shelf (Shelf), and 28 stations in the Cape Romano-Pine Island Sound area. Each of the stations in Florida Bay were monitored on a monthly basis with monitoring beginning in March 1991; Whitewater Bay monitoring began in September 1992; Biscayne Bay monthly monitoring began September 1993; the SW Florida Shelf was sampled quarterly beginning in spring 1995; and monthly sampling in the Cape Romano-Pine Island Sound area started January 1999.