19 resultados para water availability

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arctic soils store close to 14% of the global soil carbon. Most of arctic carbon is stored below ground in the permafrost. With climate warming the decomposition of the soil carbon could represent a significant positive feedback to global greenhouse warming. Recent evidence has shown that the temperature of the Arctic is already increasing, and this change is associated mostly with anthropogenic activities. Warmer soils will contribute to permafrost degradation and accelerate organic matter decay and thus increase the flux of carbon dioxide and methane into the atmosphere. Temperature and water availability are also important drivers of ecosystem performance, but effects can be complex and in opposition. Temperature and moisture changes can affect ecosystem respiration (ER) and gross primary productivity (GPP) independently; an increase in the net ecosystem exchange can be a result of either a decrease in ER or an increase in GPP. Therefore, understanding the effects of changes in ecosystem water and temperature on the carbon flux components becomes key to predicting the responses of the Arctic to climate change. The overall goal of this work was to determine the response of arctic systems to simulated climate change scenarios with simultaneous changes in temperature and moisture. A temperature and hydrological manipulation in a naturally-drained lakebed was used to assess the short-term effect of changes in water and temperature on the carbon cycle. Also, as part of International Tundra Experiment Network (ITEX), I determined the long-term effect of warming on the carbon cycle in a natural hydrological gradient established in the mid 90's. I found that the carbon balance is highly sensitive to short-term changes in water table and warming. However, over longer time periods, hydrological and temperature changed soil biophysical properties, nutrient cycles, and other ecosystem structural and functional components that down regulated GPP and ER, especially in wet areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Republic of Haiti struggles to sustainably manage its water resources. Public health is compromised by low levels of water supply, sanitation, and hygiene, and water resources are often contaminated and unsustainably allocated. While poor governance is often blamed for these shortcomings, the laws and institutions regulating water resources in Haiti are poorly understood, especially by the international community. This study brings together and analyzes Haitian water laws, assesses institutional capacities, and provides a case study of water management in northern Haiti in order to provide a more complete picture of the sector. Funded by the Inter-American Development Bank as part of the Water Availability, Quality and Integrated Water Resources Management in Northern Haiti (HA-T1179) Project, this study took place from January-July 2015, with the help of local experts and participating stakeholders. The results indicate that Haiti’s water law framework is highly fragmented, with overlapping mandates and little coordination between ministries at the national level, and ambiguous but unrealistic roles for subnational governments. A capacity assessment of institutions in northern Haiti illustrates that while local stakeholders are engaged, human and financial resources are insufficient to carry out statutory responsibilities. The findings suggest that water resources management planning should engage local governments and community fixtures while supplementing capacities with national or international support.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of siliceous microfossils of a 79 cm long peat sediment core from Highlands Hammock State Park, Florida, revealed distinct changes in the local hydrology during the past 2,500 years. The coring site is a seasonally inundated forest where water availability is directly influenced by precipitation. Diatoms, chrysophyte statospores, sponge remains and phytoliths were counted in 25 samples throughout the core. Based on the relative abundance of diatom species, the record was subdivided into four diatom assemblage zones, which mainly reflect the hydrological state of the study site. An age-depth relationship based on radiocarbon measurements of eight samples reveals a basal age of the core of approximately 2,500 cal. yrs. BP. Two significant changes of diatom assemblage composition were found that could be linked to both, natural and anthropogenic influences. At 700 cal. yrs. BP, the diatom record documents a shift from tychoplanktonicAulacoseira species to epiphytic Eunotia species, indicating a shortening of the hydroperiod, i.e. the time period during which a wetland is covered by water. This transition was interpreted as being triggered by natural climate change. In the middle of the twentieth century a second major turnover took place, at that time however, as a result of human impact on the park hydrology through the construction of dams and canals close to the study site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The eggs of the dengue fever vector Aedes aegypti possess the ability to undergo an extended quiescence period hosting a fully developed first instar larvae within its chorion. As a result of this life history stage, pharate larvae can withstand months of dormancy inside the egg where they depend on stored reserves of maternal origin. This adaptation known as pharate first instar quiescence, allows A. aegypti to cope with fluctuations in water availability. An examination of this fundamental adaptation has shown that there are trade-offs associated with it. ^ Aedes aegypti mosquitoes are frequently associated with urban habitats that may contain metal pollution. My research has demonstrated that the duration of this quiescence and the extent of nutritional depletion associated with it affects the physiology and survival of larvae that hatch in a suboptimal habitat; nutrient reserves decrease during pharate first instar quiescence and alter subsequent larval and adult fitness. The duration of quiescence compromises metal tolerance physiology and is coupled to a decrease in metallothionein mRNA levels. My findings also indicate that even low levels of environmentally relevant larval metal stress alter the parameters that determine vector capacity. ^ My research has also demonstrated that extended pharate first instar quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Extended pharate first instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner, i.e., anticipatory phenotypic plasticity results as a consequence of the duration of pharate first instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. M findings may explain, in part, A. aegypti's success as a vector and its geographic distribution and have implications for its vector capacity and control.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrology drives the carbon balance of wetlands by controlling the uptake and release of CO2 and CH4. Longer dry periods in between heavier precipitation events predicted for the Everglades region, may alter the stability of large carbon pools in this wetland's ecosystems. To determine the effects of drought on CO2 fluxes and CH4 emissions, we simulated changes in hydroperiod with three scenarios that differed in the onset rate of drought (gradual, intermediate, and rapid transition into drought) on 18 freshwater wetland monoliths collected from an Everglades short-hydroperiod marsh. Simulated drought, regardless of the onset rate, resulted in higher net CO2 losses net ecosystem exchange (NEE) over the 22-week manipulation. Drought caused extensive vegetation dieback, increased ecosystem respiration (Reco), and reduced carbon uptake gross ecosystem exchange (GEE). Photosynthetic potential measured by reflective indices (photochemical reflectance index, water index, normalized phaeophytinization index, and the normalized difference vegetation index) indicated that water stress limited GEE and inhibited Reco. As a result of drought-induced dieback, NEE did not offset methane production during periods of inundation. The average ratio of net CH4 to NEE over the study period was 0.06, surpassing the 100-year greenhouse warming compensation point for CH4 (0.04). Drought-induced diebacks of sawgrass (C3) led to the establishment of the invasive species torpedograss (C4) when water was resupplied. These changes in the structure and function indicate that freshwater marsh ecosystems can become a net source of CO2 and CH4 to the atmosphere, even following an extended drought. Future changes in precipitation patterns and drought occurrence/duration can change the carbon storage capacity of freshwater marshes from sinks to sources of carbon to the atmosphere. Therefore, climate change will impact the carbon storage capacity of freshwater marshes by influencing water availability and the potential for positive feedbacks on radiative forcing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In aquatic systems refuge habitats increase resistance to drying events and are necessary for maintaining populations in disturbed environments. However, reduced water availability and altered flow regimes threaten the existence and function of these habitats. To test refuge function I conducted a capture-mark-recapture (CMR) study, integrating citizen science angler sampling into fisheries-independent methods. The objectives of this study were twofold: 1) To determine the contribution of citizen science anglers to improving CMR research, and 2.) to quantify apparent survival of Florida Largemouth Bass, Micropterus salmoides floridanus, in a coastal refuge habitat across multiple years of drying severity. The inclusion of angler sampling was determined to be an effective and feasible method for increasing capture probability. Apparent survival of Florida Bass varied among hydrologic periods with lowest survival when marshes functionally dried (< 10 cm). Overall mortality from drying events increased with the duration of marsh drying upstream.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The eggs of the dengue fever vector Aedes aegypti possess the ability to undergo an extended quiescence period hosting a fully developed first instar larvae within its chorion. As a result of this life history stage, pharate larvae can withstand months of dormancy inside the egg where they depend on stored reserves of maternal origin. This adaptation known as pharate first instar quiescence, allows A. aegypti to cope with fluctuations in water availability. An examination of this fundamental adaptation has shown that there are trade-offs associated with it. Aedes aegypti mosquitoes are frequently associated with urban habitats that may contain metal pollution. My research has demonstrated that the duration of this quiescence and the extent of nutritional depletion associated with it affects the physiology and survival of larvae that hatch in a suboptimal habitat; nutrient reserves decrease during pharate first instar quiescence and alter subsequent larval and adult fitness. The duration of quiescence compromises metal tolerance physiology and is coupled to a decrease in metallothionein mRNA levels. My findings also indicate that even low levels of environmentally relevant larval metal stress alter the parameters that determine vector capacity. My research has also demonstrated that extended pharate first instar quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Extended pharate first instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner, i.e., anticipatory phenotypic plasticity results as a consequence of the duration of pharate first instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. M findings may explain, in part, A. aegypti’s success as a vector and its geographic distribution and have implications for its vector capacity and control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The coastal wetlands of northeastern Florida Bay are seasonally-inundated dwarf mangrove habitat and serve as a primary foraging ground for wading birds nesting in Florida Bay. A common paradigm in pulse-inundated wetlands is that prey base fishes increase in abundance while the wetland is flooded and then become highly concentrated in deeper water refuges as water levels recede, becoming highly available to wading birds whose nesting success depends on these concentrations. Although widely accepted, the relationship between water levels, prey availability and nesting success has rarely been quantified. I examine this paradigm using Roseate Spoonbills that nest on the islands in northeastern Florida Bay and forage on the mainland. Spoonbill nesting success and water levels on their foraging grounds have been monitored since 1987 and prey base fishes have been systematically sampled at as many as 10 known spoonbill foraging sites since 1990. Results demonstrated that the relationship between water level and prey abundance was not linear but rather there is likely a threshold, or series of thresholds, in water level that result in concentrated prey. Furthermore, the study indicates that spoonbills require water level-induced prey concentrations in order to have enough food available to successfully raise young.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present 8 yr of long-term water quality, climatological, and water management data for 17 locations in Everglades National Park, Florida. Total phosphorus (P) concentration data from freshwater sites (typically ,0.25 mmol L21, or 8 mg L21) indicate the oligotrophic, P-limited nature of this large freshwater–estuarine landscape. Total P concentrations at estuarine sites near the Gulf of Mexico (average ø0.5 m mol L21) demonstrate the marine source for this limiting nutrient. This ‘‘upside down’’ phenomenon, with the limiting nutrient supplied by the ocean and not the land, is a defining characteristic of the Everglade landscape. We present a conceptual model of how the seasonality of precipitation and the management of canal water inputs control the marine P supply, and we hypothesize that seasonal variability in water residence time controls water quality through internal biogeochemical processing. Low freshwater inflows during the dry season increase estuarine residence times, enabling local processes to control nutrient availability and water quality. El Nin˜o–Southern Oscillation (ENSO) events tend to mute the seasonality of rainfall without altering total annual precipitation inputs. The Nin˜o3 ENSO index (which indicates an ENSO event when positive and a La Nin˜a event when negative) was positively correlated with both annual rainfall and the ratio of dry season to wet season precipitation. This ENSO-driven disruption in seasonal rainfall patterns affected salinity patterns and tended to reduce marine inputs of P to Everglades estuaries. ENSO events also decreased dry season residence times, reducing the importance of estuarine nutrient processing. The combination of variable water management activities and interannual differences in precipitation patterns has a strong influence on nutrient and salinity patterns in Everglades estuaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We completed a synoptic survey of iron, phosphorus, and sulfur concentrations in shallow marine carbonate sediments from south Florida. Total extracted iron concentrations typically were 50 μmol g-1 dry weight (DW) and tended to decrease away from the Florida mainland, whereas total extracted phosphorus concentrations mostly were 10 μmol g-1 DW and tended to decrease from west to east across Florida Bay. Concentrations of reduced sulfur compounds, up to 40 μmol g-1 DW, tended to covary with sediment iron concentrations, suggesting that sulfide mineral formation was iron-limited. An index of iron availability derived from sediment data was negatively correlated with chlorophyll a concentrations in surface waters, demonstrating the close coupling of sediment-water column processes. Eight months after applying a surface layer of iron oxide granules to experimental plots, sediment iron, phosphorus, and sulfur were elevated to a depth of 10 cm relative to control plots. Biomass of the seagrass Thalassia testudinum was not different between control and iron addition plots, but individual shoot growth rates were significantly higher in experimental plots after 8 months. Although the iron content of leaf tissues was significantly higher from iron addition plots, no difference in phosphorus content of T. testudinum leaves was observed. Iron addition altered plant exposure to free sulfide, documented by a significantly higher δ34S of leaf tissue from experimental plots relative to controls. Iron as a buffer to toxic sulfides may promote individual shoot growth, but phosphorus availability to plants still appears to limit production in carbonate sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical coastal marine ecosystems including mangroves, seagrass beds and coral reef communities are undergoing intense degradation in response to natural and human disturbances, therefore, understanding the causes and mechanisms present challenges for scientist and managers. In order to protect our marine resources, determining the effects of nutrient loads on these coastal systems has become a key management goal. Data from monitoring programs were used to detect trends of macroalgae abundances and develop correlations with nutrient availability, as well as forecast potential responses of the communities monitored. Using eight years of data (1996–2003) from complementary but independent monitoring programs in seagrass beds and water quality of the Florida Keys National Marine Sanctuary (FKNMS), we: (1) described the distribution and abundance of macroalgae groups; (2) analyzed the status and spatiotemporal trends of macroalgae groups; and (3) explored the connection between water quality and the macroalgae distribution in the FKNMS. In the seagrass beds of the FKNMS calcareous green algae were the dominant macroalgae group followed by the red group; brown and calcareous red algae were present but in lower abundance. Spatiotemporal patterns of the macroalgae groups were analyzed with a non-linear regression model of the abundance data. For the period of record, all macroalgae groups increased in abundance (Abi) at most sites, with calcareous green algae increasing the most. Calcareous green algae and red algae exhibited seasonal pattern with peak abundances (Φi) mainly in summer for calcareous green and mainly in winter for red. Macroalgae Abi and long-term trend (mi) were correlated in a distinctive way with water quality parameters. Both the Abi and mi of calcareous green algae had positive correlations with NO3−, NO2−, total nitrogen (TN) and total organic carbon (TOC). Red algae Abi had a positive correlation with NO2−, TN, total phosphorus and TOC, and the mi in red algae was positively correlated with N:P. In contrast brown and calcareous red algae Abi had negative correlations with N:P. These results suggest that calcareous green algae and red algae are responding mainly to increases in N availability, a process that is happening in inshore sites. A combination of spatially variable factors such as local current patterns, nutrient sources, and habitat characteristics result in a complex array of the macroalgae community in the seagrass beds of the FKNMS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the relative importance of nutrient availability in relation to other physical and biological factors in determining plant community assemblages around Everglades Tree Islands (Everglades National Park, Florida, USA). We carried out a one-time survey of elevation, soil, water level and vegetation structure and composition at 138 plots located along transects in three tree islands in the Park’s major drainage basin. We used an RDA variance partitioning technique to assess the relative importance of nutrient availability (soil N and P) and other factors in explaining herb and tree assemblages of tree island tail and surrounded marshes. The upland areas of the tree islands accumulate P and show low N concentration, producing a strong island-wide gradient in soil N:P ratio. While soil N:P ratio plays a significant role in determining herb layer and tree layer community assemblage in tree island tails, nevertheless part of its variance is shared with hydrology. The total species variance explained by the predictors is very low. We define a strong gradient in nutrient availability (soil N:P ratio) closely related to hydrology. Hydrology and nutrient availability are both factors influencing community assemblages around tree islands, nevertheless both seem to be acting together and in a complex mechanism. Future research should be focused on segregating these two factors in order to determine whether nutrient leaching from tree islands is a factor determining community assemblages and local landscape pattern in the Everglades, and how this process might be affected by water management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial and temporal distributions of the epiphytic diatom flora on Thalassia testudinum was described within the Florida Bay estuary and at one Atlantic site east of the Florida Keys over a 1-year period. Species of the genus Mastogloia dominated the epiphytic diatom flora (82 out of 332 total species). Nonmetric Multidimensional Scaling (NMDS) and Analysis of Similarity (ANOSIM) revealed four distinct spatial assemblages and two temporal assemblages. Eastern and western Florida Bay assemblages were identified within the estuary. The eastern diatom assemblage was characterized by high relative abundances of Brachysira aponina and Nitzschia liebetruthii, while the western assemblage was characterized by the abundance of Reimerothrix floridensis, particularly during summer. Two diverse and distinct marine assemblages, one located in the Gulf of Mexico along the western edge of Florida Bay and the other behind the Florida reef tract in the Atlantic Ocean, were also identified. Analysis of the spatial distribution of diatoms and water quality characteristics within Florida Bay suggest that these assemblages may be structured by salinity and nutrient availability, particularly P. The Gulf of Mexico and the western Florida Bay assemblages were associated with higher water column salinities and TP concentrations and lower DIN concentrations and TN:TP ratios relative to the eastern Florida Bay assemblage. The temporal variation in diatom assemblages was associated with water temperature, though temporal indicator species were few relative to the number of spatial indicators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite marked gradients in nutrient availability that control the abundance and species composition of seagrasses in south Florida, and the importance of nutrient availability in controlling abundance and composition of epiphytes on seagrasses in other locations, we did not find that epiphyte load on the dominant seagrass, Thalassia testudinum, or that the relative contribution of algal epiphytes to the epiphyte community, was positively correlated with nutrient availability in the water column or the sediment in oligotrophic seagrass beds. Further, the abundance of microphytobenthos, as indicated by Chlorophyll-aconcentration in the sediments, was not directly correlated with concentrations of nutrients in the sediments. Our results suggest that epiphyte and microphytobenthos abundance are not unambiguous indicators of nutrient availability in relatively pristine seagrass environments, and therefore would make poor candidates for indicators of the status and trends of seagrass ecosystems in relatively low-nutrient environments like the Florida Keys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limestone-based (karstic) freshwater wetlands of the Everglades, Belize, Mexico, and Jamaica are distinctive in having a high biomass of CaCO3-rich periphyton mats. Diatoms are common components of these mats and show predictable responses to environmental variation, making them good candidates for assessing nutrient enrichment in these naturally ultraoligotrophic wetlands. However, aside from in the Everglades of southern Florida, very little research has been done to document the diatoms and their environmental preferences in karstic Caribbean wetlands, which are increasingly threatened by eutrophication. We identified diatoms in periphyton mats collected during wet and dry periods from the Everglades and similar freshwater karstic wetlands in Belize, Mexico, and Jamaica. We compared diatom assemblage composition and diversity among locations and periods, and the effect of the limiting nutrient, P, on species composition among locations. We used periphyton-mat total P (TP) as a metric of availability. A total of 176 diatom species in 45 genera were recorded from the 4 locations. Twenty-three of these species, including 9 that are considered indicative of Everglades diatom flora, were found in all 4 locations. In Everglades and Caribbean sites, we identified assemblages and indicator species associated with low and high periphyton-mat TP and calculated TP optima and tolerances for each indicator species. TP optima and tolerances of indicator species differed between the Everglades and the Caribbean, but weighted averaging models predicted periphyton-mat TP concentrations from diatom assemblages at Everglades (R2  =  0.56) and Caribbean (R2  =  0.85) locations. These results show that diatoms can be effective indicators of water quality in karstic wetlands of the Caribbean, but application of regionally generated transfer functions to distant sites provides less reliable estimates than locally developed functions.