4 resultados para water allocation

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation consists of three essays on different aspects of water management. The first essay focuses on the sustainability of freshwater use by introducing the notion that altruistic parents do bequeath economic assets for their offspring. Constructing a two-period, over-lapping generational model, an optimal ratio of consumption and pollution for old and young generations in each period is determined. Optimal levels of water consumption and pollution change according to different parameters, such as, altruistic degree, natural recharge rate, and population growth. The second essay concerns water sharing between countries in the case of trans-boundary river basins. The paper recognizes that side payments fail to forge water-sharing agreement among the international community and that downstream countries have weak bargaining power. An interconnected game approach is developed by linking the water allocation issue with other non-water issues such as trade or border security problems, creating symmetry between countries in bargaining power. An interconnected game forces two countries to at least partially cooperate under some circumstances. The third essay introduces the concept of virtual water (VW) into a traditional international trade model in order to estimate water savings for a water scarce country. A two country, two products and two factors trade model is developed, which includes not only consumers and producer's surplus, but also environmental externality of water use. The model shows that VW trade saves water and increases global and local welfare. This study should help policy makers to design appropriate subsidy or tax policy to promote water savings especially in water scarce countries.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation consists of three essays on different aspects of water management. The first essay focuses on the sustainability of freshwater use by introducing the notion that altruistic parents do bequeath economic assets for their offspring. Constructing a two-period, over-lapping generational model, an optimal ratio of consumption and pollution for old and young generations in each period is determined. Optimal levels of water consumption and pollution change according to different parameters, such as, altruistic degree, natural recharge rate, and population growth. The second essay concerns water sharing between countries in the case of trans-boundary river basins. The paper recognizes that side payments fail to forge water-sharing agreement among the international community and that downstream countries have weak bargaining power. An interconnected game approach is developed by linking the water allocation issue with other non-water issues such as trade or border security problems, creating symmetry between countries in bargaining power. An interconnected game forces two countries to at least partially cooperate under some circumstances. The third essay introduces the concept of virtual water (VW) into a traditional international trade model in order to estimate water savings for a water scarce country. A two country, two products and two factors trade model is developed, which includes not only consumers and producer’s surplus, but also environmental externality of water use. The model shows that VW trade saves water and increases global and local welfare. This study should help policy makers to design appropriate subsidy or tax policy to promote water savings especially in water scarce countries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growth, morphology and biomass allocation in response to water depth was studied in white water lily,Nymphaea odorata Aiton. Plants were grown for 13 months in 30, 60 and 90 cm water in outdoor mesocosms in southern Florida. Water lily plant growth was distinctly seasonal with plants at all water levels producing more and larger leaves and more flowers in the warmer months. Plants in 30 cm water produced more but smaller and shorter-lived leaves than plants at 60 cm and 90 cm water levels. Although plants did not differ significantly in total biomass at harvest, plants in deeper water had significantly greater biomass allocated to leaves and roots, while plants in 30 cm water had significantly greater biomass allocated to rhizomes. Although lamina area and petiole length increased significantly with water level, lamina specific weight did not differ among water levels. Petiole specific weight increased significantly with increasing water level, implying a greater cost to tethering the larger laminae in deeper water. Lamina length and width scaled similarly at different water levels and modeled lamina area (LA) accurately (LAmodeled = 0.98LAmeasured + 3.96, R2 = 0.99). Lamina area was highly correlated with lamina weight (LW = 8.43LA − 66.78, R2 = 0.93), so simple linear measurements can predict water lily lamina area and lamina weight. These relationships were used to calculate monthly lamina surface area in the mesocosms. Plants in 30 cm water had lower total photosynthetic surface area than plants in 60 cm and 90 cm water levels throughout, and in the summer plants in 90 cm water showed a great increase in photosynthetic surface area as compared to plants in shallower water. These results support setting Everglades restoration water depth targets for sloughs at depths ≥45 cm and suggest that in the summer optimal growth for white water lilies occurs at depths ≥75 cm.