4 resultados para voice activity detection
em Digital Commons at Florida International University
Resumo:
The use of canines as a method of detection of explosives is well established worldwide and those applying this technology range from police forces and law enforcement to humanitarian agencies in the developing world. Despite the recent surge in publication of novel instrumental sensors for explosives detection, canines are still regarded by many to be the most effective real-time field method of explosives detection. However, unlike instrumental methods, currently it is difficult to determine detection levels, perform calibration of the canines' ability or produce scientifically valid quality control checks. Accordingly, amongst increasingly strict requirements regarding forensic evidence admission such as Frye and Daubert, there is a need for better scientific understanding of the process of canine detection. ^ When translated to the field of canine detection, just like any instrumental technique, peer reviewed publication of the reliability, success and error rates, is required for admissibility. Commonly training is focussed towards high explosives such as TNT and Composition 4, and the low explosives such as Black and Smokeless Powders are added often only for completeness. ^ Headspace analyses of explosive samples, performed by Solid Phase Microextraction (SPME) paired with Gas Chromatography - Mass Spectrometry (GC-MS), and Gas Chromatography - Electron Capture Detection (GC-ECD) was conducted, highlighting common odour chemicals. The odour chemicals detected were then presented to previously trained and certified explosives detection canines, and the activity/inactivity of the odour determined through field trials and experiments. ^ It was demonstrated that TNT and cast explosives share a common odour signature, and the same may be said for plasticized explosives such as Composition C-4 and Deta Sheet. Conversely, smokeless powders were demonstrated not to share common odours. An evaluation of the effectiveness of commercially available pseudo aids reported limited success. The implications of the explosive odour studies upon canine training then led to the development of novel inert training aids based upon the active odours determined. ^
Resumo:
This dissertation proposed a new approach to seizure detection in intracranial EEG recordings using nonlinear decision functions. It implemented well-established features that were designed to deal with complex signals such as brain recordings, and proposed a 2-D domain of analysis. Since the features considered assume both the time and frequency domains, the analysis was carried out both temporally and as a function of different frequency ranges in order to ascertain those measures that were most suitable for seizure detection. In retrospect, this study established a generalized approach to seizure detection that works across several features and across patients. ^ Clinical experiments involved 8 patients with intractable seizures that were evaluated for potential surgical interventions. A total of 35 iEEG data files collected were used in a training phase to ascertain the reliability of the formulated features. The remaining 69 iEEG data files were then used in the testing phase. ^ The testing phase revealed that the correlation sum is the feature that performed best across all patients with a sensitivity of 92% and an accuracy of 99%. The second best feature was the gamma power with a sensitivity of 92% and an accuracy of 96%. In the frequency domain, all of the 5 other spectral bands considered, revealed mixed results in terms of low sensitivity in some frequency bands and low accuracy in other frequency bands, which is expected given that the dominant frequencies in iEEG are those of the gamma band. In the time domain, other features which included mobility, complexity, and activity, all performed very well with an average a sensitivity of 80.3% and an accuracy of 95%. ^ The computational requirement needed for these nonlinear decision functions to be generated in the training phase was extremely long. It was determined that when the duration dimension was rescaled, the results improved and the convergence rates of the nonlinear decision functions were reduced dramatically by more than a 100 fold. Through this rescaling, the sensitivity of the correlation sum improved to 100% and the sensitivity of the gamma power to 97%, which meant that there were even less false negatives and false positives detected. ^
Resumo:
Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250&mgr;M to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon-oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.
Resumo:
Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250μM to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon–oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.