5 resultados para vibration active control

em Digital Commons at Florida International University


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Structural vibration control is of great importance. Current active and passive vibration control strategies usually employ individual elements to fulfill this task, such as viscoelastic patches for providing damping, transducers for picking up signals and actuators for inputting actuating forces. The goal of this dissertation work is to design, manufacture, investigate and apply a new type of multifunctional composite material for structural vibration control. This new composite, which is based on multi-walled carbon nanotube (MWCNT) film, is potentially to function as free layer damping treatment and strain sensor simultaneously. That is, the new material integrates the transducer and the damping patch into one element. The multifunctional composite was prepared by sandwiching the MWCNT film between two adhesive layers. Static sensing test indicated that the MWCNT film sensor resistance changes almost linearly with the applied load. Sensor sensitivity factors were comparable to those of the foil strain gauges. Dynamic test indicated that the MWCNT film sensor can outperform the foil strain gage in high frequency ranges. Temperature test indicated the MWCNT sensor had good temperature stability over the range of 237 K-363 K. The Young’s modulus and shear modulus of the MWCNT film composite were acquired by nanoindentation test and direct shear test, respectively. A free vibration damping test indicated that the MWCNT composite sensor can also provide good damping without adding excessive weight to the base structure. A new model for sandwich structural vibration control was then proposed. In this new configuration, a cantilever beam covered with MWCNT composite on top and one layer of shape memory alloy (SMA) on the bottom was used to illustrate this concept. The MWCNT composite simultaneously serves as free layer damping and strain sensor, and the SMA acts as actuator. Simple on-off controller was designed for controlling the temperature of the SMA so as to control the SMA recovery stress as input and the system stiffness. Both free and forced vibrations were analyzed. Simulation work showed that this new configuration for sandwich structural vibration control was successful especially for low frequency system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of canines as a method of detection of explosives is well established worldwide and those applying this technology range from police forces and law enforcement to humanitarian agencies in the developing world. Despite the recent surge in publication of novel instrumental sensors for explosives detection, canines are still regarded by many to be the most effective real-time field method of explosives detection. However, unlike instrumental methods, currently it is difficult to determine detection levels, perform calibration of the canines' ability or produce scientifically valid quality control checks. Accordingly, amongst increasingly strict requirements regarding forensic evidence admission such as Frye and Daubert, there is a need for better scientific understanding of the process of canine detection. ^ When translated to the field of canine detection, just like any instrumental technique, peer reviewed publication of the reliability, success and error rates, is required for admissibility. Commonly training is focussed towards high explosives such as TNT and Composition 4, and the low explosives such as Black and Smokeless Powders are added often only for completeness. ^ Headspace analyses of explosive samples, performed by Solid Phase Microextraction (SPME) paired with Gas Chromatography - Mass Spectrometry (GC-MS), and Gas Chromatography - Electron Capture Detection (GC-ECD) was conducted, highlighting common odour chemicals. The odour chemicals detected were then presented to previously trained and certified explosives detection canines, and the activity/inactivity of the odour determined through field trials and experiments. ^ It was demonstrated that TNT and cast explosives share a common odour signature, and the same may be said for plasticized explosives such as Composition C-4 and Deta Sheet. Conversely, smokeless powders were demonstrated not to share common odours. An evaluation of the effectiveness of commercially available pseudo aids reported limited success. The implications of the explosive odour studies upon canine training then led to the development of novel inert training aids based upon the active odours determined. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: While research suggests whole body vibration (WBV) positively affects measures of neuromuscular performance in athletes, researchers have yet to address appropriate and effective vibration protocols. Objective: To identify the acute effects of continuous and intermittent WBV on muscular power and agility in recreationally active females. Design: We used a randomized 3-period cross-over design to observe the effects of 3 vibration protocols on muscular power and agility. Setting: Sports Science and Medicine Research Laboratory at Florida International University. Patients or Other Participants: Eleven recreationally active female volunteers (age=24.4±5.7y; ht=166.0±10.3cm; mass=59.7±14.3kg). Interventions: Each session, subjects stood on the Galileo WBV platform (Orthometrix, White Plains, NY) and received one of three randomly assigned vibration protocols. Our independent variable was vibration length (continuous, intermittent, or no vibration). Main Outcome Measures: An investigator blinded to the vibration protocol measured muscular power and agility. We measured muscular power with heights of squat and countermovement jumps. We measured agility with the Illinois Agility Test. Results: Continuous WBV significantly increased SJ height from 97.9±7.6cm to 98.5±7.5cm (P=0.019, β=0.71, η2 =0.07) but not CMJ height [99.1±7.4cm pretest and 99.4±7.4cm posttest (P=0.167, β=0.27)] or agility [19.2±2.1s pretest and 19.0±2.1s posttest (P=0.232, β=0.21)]. Intermittent WBV significantly enhanced SJ height from 97.6±7.7cm to 98.5±7.7cm (P=0.017, β=0.71, η2 =0.11) and agility 19.4±2.2s to 19.0±2.1s (P=0.001, β=0.98, η2=0.16), but did not effect CMJ height [98.7±7.7cm pretest and 99.3±7.3cm posttest (P=0.058, β=0.49)]. Conclusion: Continuous WBV increased squat jump height, while intermittent vibration enhanced agility and squat jump height. Future research should continue investigating the effect of various vibration protocols on athletic performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Clinicians use exercises in rehabilitation to enhance sensorimotor-function, however evidence supporting their use is scarce. Objective: To evaluate acute effects of handheld-vibration on joint position sense (JPS). Design: A repeated-measure, randomized, counter-balanced 3-condition design. Setting: Sports Medicine and Science Research Laboratory. Patients or Other Participants: 31 healthy college-aged volunteers (16-males, 15-females; age=23+3y, mass=76+14kg, height=173+8cm). Interventions: We measured elbow JPS and monitored training using the Flock-of-Birds system (Ascension Technology, Burlington, VT) and MotionMonitor software (Innsport, Chicago, IL), accurate to 0.5°. For each condition (15,5,0Hz vibration), subjects completed three 15-s bouts holding a 2.55kg Mini-VibraFlex dumbbell (Orthometric, New York, NY), and used software-generated audio/visual biofeedback to locate the target. Participants performed separate pre- and post-test JPS measures for each condition. For JPS testing, subjects held a non-vibrating dumbbell, identified the target (90°flexion) using biofeedback, and relaxed 3-5s. We removed feedback and subjects recreated the target and pressed a trigger. We used SPSS 14.0 (SPSS Inc., Chicago, IL) to perform separate ANOVAs (p<0.05) for each protocol and calculated effect sizes using standard-mean differences. Main Outcome Measures: Dependent variables were absolute and variable error between target and reproduced angles, pre-post vibration training. Results: 0Hz (F1,61=1.310,p=0.3) and 5Hz (F1,61=2.625,p=0.1) vibration did not affect accuracy. 15Hz vibration enhanced accuracy (6.5±0.6 to 5.0±0.5°) (F1,61=8.681,p=0.005,ES=0.3). 0Hz did not affect variability (F1,61=0.007,p=0.9). 5Hz vibration decreased variability (3.0±1.8 to 2.3±1.3°) (F1,61=7.250,p=0.009), as did 15Hz (2.8±1.8 to 1.8±1.2°) (F1,61=24.027, p<0.001). Conclusions: Our results support using handheld-vibration to improve sensorimotor-function. Future research should include injured subjects, functional multi-joint/multi-planar measures, and long-term effects of similar training.