11 resultados para vector quantization based Gaussian modeling
em Digital Commons at Florida International University
Resumo:
Choosing between Light Rail Transit (LRT) and Bus Rapid Transit (BRT) systems is often controversial and not an easy task for transportation planners who are contemplating the upgrade of their public transportation services. These two transit systems provide comparable services for medium-sized cities from the suburban neighborhood to the Central Business District (CBD) and utilize similar right-of-way (ROW) categories. The research is aimed at developing a method to assist transportation planners and decision makers in determining the most feasible system between LRT and BRT. ^ Cost estimation is a major factor when evaluating a transit system. Typically, LRT is more expensive to build and implement than BRT, but has significantly lower Operating and Maintenance (OM) costs than BRT. This dissertation examines the factors impacting capacity and costs, and develops cost models, which are a capacity-based cost estimate for the LRT and BRT systems. Various ROW categories and alignment configurations of the systems are also considered in the developed cost models. Kikuchi's fleet size model (1985) and cost allocation method are used to develop the cost models to estimate the capacity and costs. ^ The comparison between LRT and BRT are complicated due to many possible transportation planning and operation scenarios. In the end, a user-friendly computer interface integrated with the established capacity-based cost models, the LRT and BRT Cost Estimator (LBCostor), was developed by using Microsoft Visual Basic language to facilitate the process and will guide the users throughout the comparison operations. The cost models and the LBCostor can be used to analyze transit volumes, alignments, ROW configurations, number of stops and stations, headway, size of vehicle, and traffic signal timing at the intersections. The planners can make the necessary changes and adjustments depending on their operating practices. ^
Resumo:
Virtual machines (VMs) are powerful platforms for building agile datacenters and emerging cloud systems. However, resource management for a VM-based system is still a challenging task. First, the complexity of application workloads as well as the interference among competing workloads makes it difficult to understand their VMs’ resource demands for meeting their Quality of Service (QoS) targets; Second, the dynamics in the applications and system makes it also difficult to maintain the desired QoS target while the environment changes; Third, the transparency of virtualization presents a hurdle for guest-layer application and host-layer VM scheduler to cooperate and improve application QoS and system efficiency. This dissertation proposes to address the above challenges through fuzzy modeling and control theory based VM resource management. First, a fuzzy-logic-based nonlinear modeling approach is proposed to accurately capture a VM’s complex demands of multiple types of resources automatically online based on the observed workload and resource usages. Second, to enable fast adaption for resource management, the fuzzy modeling approach is integrated with a predictive-control-based controller to form a new Fuzzy Modeling Predictive Control (FMPC) approach which can quickly track the applications’ QoS targets and optimize the resource allocations under dynamic changes in the system. Finally, to address the limitations of black-box-based resource management solutions, a cross-layer optimization approach is proposed to enable cooperation between a VM’s host and guest layers and further improve the application QoS and resource usage efficiency. The above proposed approaches are prototyped and evaluated on a Xen-based virtualized system and evaluated with representative benchmarks including TPC-H, RUBiS, and TerraFly. The results demonstrate that the fuzzy-modeling-based approach improves the accuracy in resource prediction by up to 31.4% compared to conventional regression approaches. The FMPC approach substantially outperforms the traditional linear-model-based predictive control approach in meeting application QoS targets for an oversubscribed system. It is able to manage dynamic VM resource allocations and migrations for over 100 concurrent VMs across multiple hosts with good efficiency. Finally, the cross-layer optimization approach further improves the performance of a virtualized application by up to 40% when the resources are contended by dynamic workloads.
Resumo:
Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. ^ Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. ^ Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. ^ A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. ^ Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the ' a&d12; ' position on amylose exhibited a maximal increase of 17.1 kcal/mol as compared with the starch/PPC-MA blend. ^ Conclusions. ROM was found to be a more effective compatibilizer in improving the favorable interactions between starch and PPC as compared to MA. The ' a&d12; ' position was found to be the most favorable attachment point of ROM to amylose for stable blend formation with PPC.^
Resumo:
Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.
Resumo:
With the exponential increasing demands and uses of GIS data visualization system, such as urban planning, environment and climate change monitoring, weather simulation, hydrographic gauge and so forth, the geospatial vector and raster data visualization research, application and technology has become prevalent. However, we observe that current web GIS techniques are merely suitable for static vector and raster data where no dynamic overlaying layers. While it is desirable to enable visual explorations of large-scale dynamic vector and raster geospatial data in a web environment, improving the performance between backend datasets and the vector and raster applications remains a challenging technical issue. This dissertation is to implement these challenging and unimplemented areas: how to provide a large-scale dynamic vector and raster data visualization service with dynamic overlaying layers accessible from various client devices through a standard web browser, and how to make the large-scale dynamic vector and raster data visualization service as rapid as the static one. To accomplish these, a large-scale dynamic vector and raster data visualization geographic information system based on parallel map tiling and a comprehensive performance improvement solution are proposed, designed and implemented. They include: the quadtree-based indexing and parallel map tiling, the Legend String, the vector data visualization with dynamic layers overlaying, the vector data time series visualization, the algorithm of vector data rendering, the algorithm of raster data re-projection, the algorithm for elimination of superfluous level of detail, the algorithm for vector data gridding and re-grouping and the cluster servers side vector and raster data caching.
Resumo:
One of the most popular techniques for creating spatialized virtual sounds is based on the use of Head-Related Transfer Functions (HRTFs). HRTFs are signal processing models that represent the modifications undergone by the acoustic signal as it travels from a sound source to each of the listener's eardrums. These modifications are due to the interaction of the acoustic waves with the listener's torso, shoulders, head and pinnae, or outer ears. As such, HRTFs are somewhat different for each listener. For a listener to perceive synthesized 3-D sound cues correctly, the synthesized cues must be similar to the listener's own HRTFs. ^ One can measure individual HRTFs using specialized recording systems, however, these systems are prohibitively expensive and restrict the portability of the 3-D sound system. HRTF-based systems also face several computational challenges. This dissertation presents an alternative method for the synthesis of binaural spatialized sounds. The sound entering the pinna undergoes several reflective, diffractive and resonant phenomena, which determine the HRTF. Using signal processing tools, such as Prony's signal modeling method, an appropriate set of time delays and a resonant frequency were used to approximate the measured Head-Related Impulse Responses (HRIRs). Statistical analysis was used to find out empirical equations describing how the reflections and resonances are determined by the shape and size of the pinna features obtained from 3D images of 15 experimental subjects modeled in the project. These equations were used to yield “Model HRTFs” that can create elevation effects. ^ Listening tests conducted on 10 subjects show that these model HRTFs are 5% more effective than generic HRTFs when it comes to localizing sounds in the frontal plane. The number of reversals (perception of sound source above the horizontal plane when actually it is below the plane and vice versa) was also reduced by 5.7%, showing the perceptual effectiveness of this approach. The model is simple, yet versatile because it relies on easy to measure parameters to create an individualized HRTF. This low-order parameterized model also reduces the computational and storage demands, while maintaining a sufficient number of perceptually relevant spectral cues. ^
Resumo:
Conceptual database design is an unusually difficult and error-prone task for novice designers. This study examined how two training approaches---rule-based and pattern-based---might improve performance on database design tasks. A rule-based approach prescribes a sequence of rules for modeling conceptual constructs, and the action to be taken at various stages while developing a conceptual model. A pattern-based approach presents data modeling structures that occur frequently in practice, and prescribes guidelines on how to recognize and use these structures. This study describes the conceptual framework, experimental design, and results of a laboratory experiment that employed novice designers to compare the effectiveness of the two training approaches (between-subjects) at three levels of task complexity (within subjects). Results indicate an interaction effect between treatment and task complexity. The rule-based approach was significantly better in the low-complexity and the high-complexity cases; there was no statistical difference in the medium-complexity case. Designer performance fell significantly as complexity increased. Overall, though the rule-based approach was not significantly superior to the pattern-based approach in all instances, it out-performed the pattern-based approach at two out of three complexity levels. The primary contributions of the study are (1) the operationalization of the complexity construct to a degree not addressed in previous studies; (2) the development of a pattern-based instructional approach to database design; and (3) the finding that the effectiveness of a particular training approach may depend on the complexity of the task.
Resumo:
Voice communication systems such as Voice-over IP (VoIP), Public Switched Telephone Networks, and Mobile Telephone Networks, are an integral means of human tele-interaction. These systems pose distinctive challenges due to their unique characteristics such as low volume, burstiness and stringent delay/loss requirements across heterogeneous underlying network technologies. Effective quality evaluation methodologies are important for system development and refinement, particularly by adopting user feedback based measurement. Presently, most of the evaluation models are system-centric (Quality of Service or QoS-based), which questioned us to explore a user-centric (Quality of Experience or QoE-based) approach as a step towards the human-centric paradigm of system design. We research an affect-based QoE evaluation framework which attempts to capture users' perception while they are engaged in voice communication. Our modular approach consists of feature extraction from multiple information sources including various affective cues and different classification procedures such as Support Vector Machines (SVM) and k-Nearest Neighbor (kNN). The experimental study is illustrated in depth with detailed analysis of results. The evidences collected provide the potential feasibility of our approach for QoE evaluation and suggest the consideration of human affective attributes in modeling user experience.
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system's EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter's components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled
Resumo:
Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled