4 resultados para vanilloid receptor agonist
em Digital Commons at Florida International University
Resumo:
Kainic acid has been used for nearly 50 years as a tool in neuroscience due to its pronounced neuroexcitatory properties. However, the significant price increase of kainic acid resulting from the disruption in the supply from its natural source, the alga Digenea Simplex, as well as inefficient synthesis of kainic acid, call for the exploration of functional mimics of kainic acid that can be synthesized in a simpler way. Aza kainoids analog could be one of them. The unsubstituted aza analog of kainoids has demonstrates its ability as an ionotropic glutamate receptor agonist and showed affinity in the chloride dependent glutamate (GluCl) binding site. This opened a question of the importance of the presence of one nitrogen or both nitrogens in the aza kainoid analogs for binding to glutamate receptors. Therefore, two different pyrrolidine analogs of kainic acid, trans -4-(carboxymethyl)pyrrolidine-3-carboxylic acid and trans -2-carboxy-3-pyrrolidineacetic acid, were synthesized through multi-step sequences. The lack of the affinity of both pyrrolidine analogs in GluCl binding site indicated that both nitrogens in aza kainoid analogs are involved in hydrogen bonding with receptors, significantly enhancing their affinity in GluCl binding site. Another potential functional mimic of kainic acid is isoxazolidine analogs of kainoids whose skeleton can be constituted directly via a 1, 3 dipolar cycloaddition as the key step. The difficulty in synthesizing N-unsubstituted isoxazolidines when applying such common protecting groups as alkyl, phenyl and benzyl groups, and the requirement of a desired enantioselectivity due to the three chiral ceneters in kainic acid, pose great challenges. Hence, several different protected nitrones were studied to establish that diphenylmethine nitrone may be a good candidate as the dipole in that the generated isoxazolidines can be deprotected in mild conditions with high yields. Our investigations also indicated that the exo/endo selectivity of the 1, 3 dipolar cycloaddition can be controlled by Lewis acids, and that the application of a directing group in dipolarophiles can accomplish a satisfied enantioselectivity. Those results demonstrated the synthesis of isoxazoldines analogs of kainic acid is very promising.
Resumo:
Kainic acid has been used for nearly 50 years as a tool in neuroscience due to its pronounced neuroexcitatory properties. However, the significant price increase of kainic acid resulting from the disruption in the supply from its natural source, the alga Digenea Simplex, as well as inefficient synthesis of kainic acid, call for the exploration of functional mimics of kainic acid that can be synthesized in a simpler way. Aza kainoids analog could be one of them. The unsubstituted aza analog of kainoids has demonstrates its ability as an ionotropic glutamate receptor agonist and showed affinity in the chloride dependent glutamate (GluCl) binding site. This opened a question of the importance of the presence of one nitrogen or both nitrogens in the aza kainoid analogs for binding to glutamate receptors. Therefore, two different pyrrolidine analogs of kainic acid, trans-4-(carboxymethyl)pyrrolidine-3-carboxylic acid and trans-2-carboxy-3-pyrrolidineacetic acid, were synthesized through multi-step sequences. The lack of the affinity of both pyrrolidine analogs in GluCl binding site indicated that both nitrogens in aza kainoid analogs are involved in hydrogen bonding with receptors, significantly enhancing their affinity in GluCl binding site. Another potential functional mimic of kainic acid is isoxazolidine analogs of kainoids whose skeleton can be constituted directly via a 1, 3 dipolar cycloaddition as the key step. The difficulty in synthesizing N-unsubstituted isoxazolidines when applying such common protecting groups as alkyl, phenyl and benzyl groups, and the requirement of a desired enantioselectivity due to the three chiral ceneters in kainic acid, pose great challenges. Hence, several different protected nitrones were studied to establish that diphenylmethine nitrone may be a good candidate as the dipole in that the generated isoxazolidines can be deprotected in mild conditions with high yields. Our investigations also indicated that the exo/endo selectivity of the 1, 3 dipolar cycloaddition can be controlled by Lewis acids, and that the application of a directing group in dipolarophiles can accomplish a satisfied enantioselectivity. Those results demonstrated the synthesis of isoxazoldines analogs of kainic acid is very promising.
Resumo:
Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined. Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.
Resumo:
Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined.^ Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. ^ From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.^