4 resultados para value distribution

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extreme stock price movements are of great concern to both investors and the entire economy. For investors, a single negative return, or a combination of several smaller returns, can possible wipe out so much capital that the firm or portfolio becomes illiquid or insolvent. If enough investors experience this loss, it could shock the entire economy. An example of such a case is the stock market crash of 1987. Furthermore, there has been a lot of recent interest regarding the increasing volatility of stock prices. ^ This study presents an analysis of extreme stock price movements. The data utilized was the daily returns for the Standard and Poor's 500 index from January 3, 1978 to May 31, 2001. Research questions were analyzed using the statistical models provided by extreme value theory. One of the difficulties in examining stock price data is that there is no consensus regarding the correct shape of the distribution function generating the data. An advantage with extreme value theory is that no detailed knowledge of this distribution function is required to apply the asymptotic theory. We focus on the tail of the distribution. ^ Extreme value theory allows us to estimate a tail index, which we use to derive bounds on the returns for very low probabilities on an excess. Such information is useful in evaluating the volatility of stock prices. There are three possible limit laws for the maximum: Gumbel (thick-tailed), Fréchet (thin-tailed) or Weibull (no tail). Results indicated that extreme returns during the time period studied follow a Fréchet distribution. Thus, this study finds that extreme value analysis is a valuable tool for examining stock price movements and can be more efficient than the usual variance in measuring risk. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a dissertation about urban systems; within this broad subject I tackle three issues, one that focuses on an observed inter-city relationship and two that focus on an intra-city phenomenon. In Chapter II I adapt a model of random emergence of economic opportunities from the firm growth literature to the urban dynamics situation and present several predictions for urban system dynamics. One of these predictions is that the older the city the larger and more diversified it is going to be on average, which I proceed to verify empirically using two distinct datasets. In Chapter III I analyze the Residential Real Estate Bubble that took place in Miami-Dade County from 1999 to 2006. I adopt a Spatial-Economic model developed for the Paris Bubble episode of 1984–1993 and formulate an innovative test of the results in terms of speculative intensity on the basis of proxies of investor activity available in my dataset. My results support the idea that the best or more expensive areas are also where the greatest speculative activity takes place and where the rapid increase in prices begins. The most significant departure from previous studies that emerges in my results is the absence of a wider gap between high priced areas and low priced areas in the peak year. I develop a measure of dispersion in value among areas and contrast the Miami-Dade and Paris episodes. In Chapter IV I analyze the impact on tax equity of a Florida tax-limiting legislation known as Save Our Homes. I first compare homesteaded and non-homesteaded properties, and second, look within the subset of homesteaded properties. I find that non-homesteaded properties increase their share of taxes paid relative to homesteaded properties during an up market, but that this is reversed during a down market. For the subset of homesteaded properties I find that the impact on tax equity of SOH will depend on differential growth rates among higher and lower valued homes, but during times of rapid home price appreciation, in a scenario of no differential growth rates in property values, SOH increases progressivity relative to the prior system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the angular distribution of photon plus jet events in pp collisions at [special characters omitted] = 7 TeV with the Compact Muon Solenoid (CMS) detector is presented. The photon is restricted to the central region of the detector (:η: <1.4442) while the jet is allowed to be present in both central and forward regions of CMS (:η: < 2.4). Dominant backgrounds due to jets fragmenting into neutral mesons are accounted for through the use of a template method that discriminates between signal and background. The angular distribution, :η*:, is defined as the absolute value of the difference in η between the leading photon and leading jet in an event divided by two. The angular distribution ranging from 0–1.4 was examined and compared with next-to-leading order QCD predictions and was found to be in good agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lateral load distribution factor is a key factor for designing and analyzing curved steel I-girder bridges. In this dissertation, the effects of various parameters on moment and shear distribution for curved steel I-girder bridges were studied using the Finite Element Method (FEM). The parameters considered in the study were: radius of curvature, girder spacing, overhang, span length, number of girders, ratio of girder stiffness to overall bridge stiffness, slab thickness, girder longitudinal stiffness, cross frame spacing, and girder torsional inertia. The variations of these parameters were based on the statistical analysis of the real bridge database, which was created by extracting data from existing or newly designed curved steel I-girder bridge plans collected all over the nation. A hypothetical bridge superstructure model that was made of all the mean values of the data was created and used for the parameter study. ^ The study showed that cross frame spacing and girder torsional inertia had negligible effects. Other parameters had been identified as key parameters. Regression analysis was conducted based on the FEM analysis results and simplified formulas for predicting positive moment, negative moment, and shear distribution factors were developed. Thirty-three real bridges were analyzed using FEM to verify the formulas. The ratio of the distribution factor obtained from the formula to the one obtained from the FEM analysis, which was referred to as the g-ratio, was examined. The results showed that the standard deviation of the g-ratios was within 0.04 to 0.06 and the mean value of the g-ratios was greater than unity by one standard deviation. This indicates that the formulas are conservative in most cases but not overly conservative. The final formulas are similar in format to the current American Association of State Highway and Transportation Officials (AASHTO) Load Resistance and Factor Design (LRFD) specifications. ^ The developed formulas were compared with other simplified methods. The outcomes showed that the proposed formulas had the most accurate results among all methods. ^ The formulas developed in this study will assist bridge engineers and researchers in predicting the actual live load distribution in horizontally curved steel I-girder bridges. ^