23 resultados para tropical semideciduous forest
em Digital Commons at Florida International University
Resumo:
Iridescent blue leaf coloration in four Malaysian rain forest understory plants, Diplazium tomentosum Bl. (Athyriaceae), Lindsaea lucida Bi. (Lindsaeaceae), Begonia pavonina Ridl. (Begoniaceae), and Phyllagathis rotundifolia Bl. (Melastoma- taceae) is caused by a physical effect, constructive interference of reflected blue light. The ultrastructural basis for this in D. tomentosum and L. lucida is multiple layers of cellulose microfibrils in the uppermost cell walls of the adaxial epidermis. The helicoidal arrangement of these fibrils is analogous to that which produces a similar color in arthropods. In B. pavonina and P. rotundifolia the blue-green coloration is caused by parallel lamellae in specialized plastids adjacent to the abaxial wall of the adaxial epidermis. The selective advantage of this color production, if any, is unknown.
Resumo:
The permanent pigmentation of the leaves of tropical rain forest herbs with anthocyanin has traditionally been viewed as a mechanism for enhancing transpiration by increased heat absorption. We report measurements to ?+0.1?0C on four Indo-mal- esian forest species polymorphic with respect to color. There were no detectable differences in temperature between cyanic and green leaves. In deeply shaded habitats, any temperature difference would arise from black-body infrared radiation which all leaves absorb and to which anthocyanins are transparent. Reflectance spectra of the lower leaf surfaces of these species re- vealed increased reflectance around 650-750 nm for cyanic leaves compared with green leaves of the same species. In all spe- cies anthocyanin was located in a single layer of cells immediately below the photosynthetic tissue. These observations provide empirical evidence that the cyanic layer can improve photosynthetic energy capture by back-scattering additional light through the photosynthetic tissue.
Resumo:
A ray tracing model has been developed to investigate the possible focusing effects of the convexly curved epidermal cell walls which characterize a number of shade-adapted plants. The model indicates that such focusing occurs, resulting in higher photosynthetic photon flux densities at certain locations within the leaf. It is postulated that there will be a corresponding increase in the rate of photosynthesis. In addition, leaf reflectance measurements indicate that this is generally less for the shade plants compared with sun species and would be advantageous in increasing the efficiency of energy capture. Either effect is important for plants which must survive at extremely low light levels.
Resumo:
This study examined how different rainfall regimes affect a set of leaf functional traits related to plant stress and forest structure in tropical dry forest (TDF) species on limestone substrate. One hundred fifty eight individuals of four tree species were sampled in six ecological sites in south Florida and Puerto Rico, ranging in mean annual rainfall from 858 to 1933 mm yr-1. Leaf nitrogen content, specific leaf area (SLA), and N:P ratio of evergreen species, but not deciduous species, responded positively to increasing rainfall. Phosphorus content was unaffected in both groups. Canopy height and basal area reached maxima of 10.3 m and 31.4 m2 ha-1, respectively, at 1168 mm annual rainfall. Leaf traits reflected soil properties only to a small extent. This led us to the conclusion that water is a major limiting factor in TDF and some species that comprise TDF ecosystems are limited by nitrogen in limestone sites with less than ~1012 mm rainfall, but organismal, biological and/or abiotic forces other than rainfall control forest structure in moister sites.
Resumo:
ABSTRACT. The canopy dynamics and light climates within a 20 by 60 m quadrat were studied in a disturbed moist deciduous forest near Bombay, India. A map was drawn of individual trees within the quadrat, the taxa were identified, and their phenology was followed from November 1984 to July 1985. The quadrat contained 14 species, the most common being Tectona grandis, Terminalia tomentosa, Butea monosperma, Mitragyne parviflora and Albizia procera. Some individuals were in leaf at all times, more so at the moister east end of the quadrat. In Novem- ber at the end of the rainy season, light measurements documented percentages of total daily photosynthetic photon fluence (PPF) at 10.0% of full sunlight; 44% of this flux was due to sun- flecks whose duration was approximately 17% of the daytime hours. Values for six sites were similar to mid-day measurements along a 40 m transect, and consistent with the 94% canopy cover of the sites, photographed with a fish-eye lens. The March dry season measurements re- vealed a more intense radiation environment (54% of solar PPF), and 59% of the photosyn- thetic photon flux density at mid-day along the transect. Canopy openings were increased to a mean of 59.4%. Light in the understorey in November was spectrally altered, with typical R:FR ratios of 0.30, compared to March values identical to those of sunlight, at 1.10.
Resumo:
Thirteens hade-adaptedr ain forest species were comparedw ith twelve sun-adaptedt ropical forest species for correlates to leaf optical properties (described previously in Amer. J. Bot. 73: 1100-1108). The two samples were similar in absorptance of quanta for photosynthesis, but the shade-adaptedt axa: 1) had significantlyl ower specificl eaf weights,i ndicatinga more metabolically efficient production of surface for quantum capture; 2) synthesized less chlorophyll per unit area; and 3) used less chlorophyll for capturing the same quanta for photosynthesis. The anatomical features that best correlate with this increased efficiency are palisade cell shape and chloroplast distribution. Palisade cells with more equal dimensions have more chloroplasts on their abaxial surfaces. This dense layer of chloroplasts maximizes the light capture efficiency limited by sieve effects. The more columnar palisade cells of sun-adapted taxa allow light to pass through the central vacuoles and spaces between cells, making chloroplasts less efficient in energy capture, but allowing light to reach chloroplasts in the spongy mesophyll. Pioneer species may be an exception to these two groups of species. Three pioneer taxa included in this study have columnar palisade cells that are extremely narrow and packed closely together. This layer allows little penetration of light, but exposure of the leaf undersurface may provide illumination of spongy mesophyll chloroplasts in these plants.
Resumo:
Both light quantity and quality affect the development and autoecology of plants under shade conditions, as in the understorey of tropical forests. However, little research has been directed towards the relative contributions of lowered photosynthetic photon flux density (PPFD) versus altered spectral distributions (as indicated by quantum ratios of 660 to 730 nm, or R:FR) of radiation underneath vegetation canopies. A method for constructing shade enclosures to study the contribution of these two variables is described. Three tropical leguminous vine species (Abrus precatorius L., Caesalpinia bondicela Fleming and Mucuna pruriens (L.) DC.) were grown in two shade enclosures with 3-4% of solar PPFD with either the R:FR of sunlight (1.10) or foliage shade (0.33), and compared to plants grown in sunlight. Most species treated with low R:FR differed from those treated with high R:FR in (1) percent allocation to dry leaf weight, (2) internode length, (3) dry stem weight/length, (4) specific leaf weight, (5) leaf size, and (6) chlorophyll a/b ratios. However, these plants did not differ in chlorophyll content per leaf dry weight or area. In most cases the effects of low R:FR and PPFD were additional to those of high R:FR and low PPFD. Growth patterns varied among the three species, but both low PPFD and diminished R:FR were important cues in their developmental responses to light environments. This shadehouse system should be useful in studying the effects of light on the developmental ecology of other tropical forest plants.
Resumo:
Spatial heterogeneity in soils is often characterized by the presence of resource-enriched patches ranging in size from a single shrub to wooded thickets. If the patches persist long enough, the primary constraint on production may transition from one limiting environmental factor to another. Tree islands that are scattered throughout the Florida Everglades basin comprise nutrient-enriched patches, or resource islands, in P-limited oligotrophic marshes. We used principal component analysis and multiple regressions to characterize the belowground environment (soil, hydrology) of one type of tree island, hardwood hammocks, and examined its relationship with the three structural variables (basal area, biomass, and canopy height) indicative of site productivity. Hardwood hammocks in the southern Everglades grow on two distinct soil types. The first, consisting of shallow, organic, relatively low-P soils, is common in the seasonally flooded Marl Prairie landscape. In contrast, hammocks on islands embedded in long hydroperiod marsh have deeper, alkaline, mineral soils with extremely high P concentrations. However, this edaphic variation does not translate simply into differences in forest structure and production. Relative water depth was unrelated to all measures of forest structure and so was soil P, but the non-carbonate component of the mineral soil fraction exhibited a strong positive relationship with canopy height. The development of P-enriched forest resource islands in the Everglades marsh is accompanied by the buildup of a mineral soil; however, limitations on growth in mature islands appear to differ substantively from those that dominate incipient stages in the transformation from marsh to forest. Key words: resource island; tree
Resumo:
The concentration of avian song at first light (i.e., the dawn chorus) is widely appreciated but has an enigmatic functional significance. The most widely accepted explanation is that birds are active but light levels are not adequate for foraging. As a consequence, the time of first song should be predictable from the light level of individuals singing at dawn. To test this, I collected data from a tropical forest of Ecuador, involving 130 species. Light intensity at first song was a highly repeatable species' trait (r = 0.57). Foraging height was a good predictor of first song, with canopy birds singing at lower light levels than understory birds (r = -0.62). Although light level predicts the onset of singing in tropical and temperate bird communities, the structural complexity and trophic specializations in tropical forests may exert an important influence, which has been overlooked in research conducted in the temperate zone.
Resumo:
The liana Artabotrys hexapetalus (L.f.) Bhand., which is widely planted in the Tropics and native to African rain forests, produced new reiterations (new leader shoots) normally and after damage induced by Hurricane Andrew (August 24, 1992). In each new orthotropic shoot, there is a gradient in lateral branch structures from basal thorns, to vegetative leafy branches, to distal leafy flowering branches. We noted that reiterations developing in shade had more thorns than similar reiterations developing in full sun. Tents with clear (66% photosynthetically active radiation [PAR]) and shaded plastic film (12%–14% PAR) were placed over nodes when the axillary buds began to expand to produce reiteration shoots. After 2 mo of growth inside the tents and in the open, the types of lateral outgrowths (thorn vs. branch) were recorded. Shoots in spectrally neutral shade (red to far red of full sun) and spectrally altered shade (red to far red of canopy shade) produced significantly more thorns at the lower nodes of the shoots as compared to those in full sun. Shoots in control clear plastic tents were the same as those in full sun. We conclude that the fate of lateral bud development is controlled by irradiance (light level) but not by light quality. Increased thorn production in shade could be advantageous to plants growing in the deep shade of rain forests. Thorns in the self-shaded regions of the plant, and well below the forest canopy, could aid in protection from herbivory and in climbing by acting as hooks.
Resumo:
Abstract Two species of mangrove trees of Indo- Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year-1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximumnumber of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha-1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year-1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.
Resumo:
We assessed the diversity of woody plants at 15 forested sites in the Tansa Valley of Thane District, in Maharashtra, India. The fewest species (11) were seen at a degraded mangrove site near the river mouth, and the greatest number (150) in the rich semi-evergreen forest on Tungar Hill. For all sites there were 141 tree, 25 shrub and 15 liana species, a total of 181 species. Excluding the mangrove site, which had no species in common with the other 14 sites, we analyzed the species distributions in detail. 2 These sites ranged in area from 4 to 30 km each, had woody floras of 89 6 6 species, and varied in intensity of human impact. Despite a history of exploitation and substantial reduction in biomass from firewood collecting, set fires and illicit tree felling, considerable plant diversity remains in the area.We found a modest increase in species richness in transects away from two villages. We observed the exploitation of the forest by the principal users, primarily of the Warli Tribe. They exploited a wide variety of forest resources (92 species), for medicines, foods, construction materials, household goods, manure and other purposes. They collected 15 items for sale. By far the single most important item collected was firewood, which dramatically reduced forest biomass within 2 km of villages. The species distributions in these forest remnants are strongly nested, mostly due to varying degrees of disturbance at individual sites. The high species diversity on Tungar Hill is most likely a relict of the earlier character of forests throughout much of the valley. It merits the highest priorities for preservation, as a refuge for Western Ghat species at the northern limits of their distributions.
Resumo:
Two species of mangrove trees of Indo- Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year-1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximumnumber of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha-1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year-1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.
Resumo:
This study surveys the occurrence of nodulation in woody legume species in Panamá and Costa Rica, describes nodule and root characteristics, and researches host-bacteria specificity, nodulation potential of soils, and the effects of light, added nitrogen, and rhizobia and VA mycorrhizal fungi inoculation on seedling growth. I examined 83 species in 37 genera and found 80% to be nodulated. Percent nodulated species in the Caesalpinioideae, Mimosoideae, and Papilionoideae was 17, 95, and 86, respectively, with no correlation between nodule morphology and tribal classification. Nodules formed mainly at root branch points which supports epidermal breaks as an important rhizobia infection route. More non-nodulated than nodulated species had root hairs. Several species emitted volatile sulfur-containing compounds, including the toxic compound ethylmercaptan, from roots, germinating seeds, and other tissues. These emissions may have an allelopathic action against pathogens, predators, or other plants. In contrast to the general non-specificity of most legumes for rhizobia, Mimosa pigra L. was highly specific and only nodulated in flooded soils. This species' specificity, combined with a limited occurrence of its root nodule bacteria may limit its natural distribution, but its spread as an invasive weed is facilitated when fill material from rivers is deposited in other areas. ^ An experimental light level of 1.5% of full sun completely inhibited seedling nodulation, as do similar naturally low levels in forest understory. In the forest, trees and seedlings were not nodulated. in some soils with suspected high N content. For six experimental species, added N progressively increased seedling growth while decreasing nodule biomass; at the highest level of added N nodulation was completely suppressed. Species and individuals showed variation in nodule biomass at high N applications which may indicate an opportunity for genetic selection for optimal N acquisition. Rhizobia inoculation had a small positive effect on seedling shoot growth, but VA mycorrhiza inoculation overwhelmingly increased seedling size, biomass, and leaf mineral concentration. In lowland tropical forest, VA mycorrhizal colonization appears indispensable for legume nodulation because of the fungus' ability to supply P in deficient soils. This requirement makes the legume-rhizobia-mycorrhiza association obligately tripartite. ^