5 resultados para tree biomass
em Digital Commons at Florida International University
Resumo:
We produced a landscape scale map of mean tree height in mangrove forests in Everglades National Park (ENP) using the elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM data was calibrated using airborne lidar data and a high resolution USGS digital elevation model (DEM). The resulting mangrove height map has a mean tree height error of 2.0 m (RMSE) over a pixel of 30 m. In addition, we used field data to derive a relationship between mean forest stand height and biomass in order to map the spatial distribution of standing biomass of mangroves for the entire National Park. The estimation showed that most of the mangrove standing biomass in the ENP resides in intermediate- height mangrove stands around 8 m. We estimated the total mangrove standing biomass in ENP to be 5.6 X 109 kg.
Resumo:
The hydrodynamics of tree islands during the growth of newly planted trees has been found to be influenced by both vegetation biomass and geologic conditions. From July 2007 through June 2009, groundwater and surface-water levels were monitored on eight recently planted tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) facility in Boynton Beach, Florida, USA. Over the 2-year study, stand development coincided with the development of a water-table depression in the center of each of the islands that was bounded by a hydraulic divide along the edges. The water-table depression was greater in islands composed of limestone as compared to those composed of peat. The findings of this study suggest that groundwater evapotranspiration by trees on tree islands creates complex hydrologic interactions between the shallow groundwater in tree islands and the surrounding surface water and groundwater bodies.
Resumo:
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.
Resumo:
Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a −1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration.
Resumo:
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.