4 resultados para treatment and women
em Digital Commons at Florida International University
Resumo:
It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.
Resumo:
The purpose of this research was to explore the differences in factors associated with girls' status and criminal arrests. This study used data from six juvenile justice programs in multiple states, which was derived from the Juvenile Assessment and Intervention System (JAIS). The sample of 908 adolescent girls (ages 13-19) was ethnically and racially diverse (41% African American, 32% white, 12% Hispanic, 11% Native American and 4% Other). A structural equation model (SEM) was analyzed which tested the potential effects of adolescent substance use, truancy, suicidal ideation/attempt, self-harm, peer legal trouble, parental criminal history and parental and non-parental abuse on type of offense (status and criminal) and whether any of these relationships varied as a function of race/ethnicity. ^ Complex relationships emerged regarding both status and more serious criminal arrests. One of the most important findings was that distinct and different patterns of factors were associated with status arrests compared to criminal arrests. For example, truancy and parental abuse were directly associated with status offenses, whereas parental criminal history was directly related to criminal arrests. However, both status and criminal arrests shared common associations, including substance use, which signifies that certain variables are influential regarding both non-criminal and more serious crimes. In addition, significant meditating influences were observed which help to explain some underlying mechanisms involved in girls' arrest patterns. Finally, race/ethnicity moderated a key relationship, which has serious implications for treatment. ^ In conclusion, the present study is an important contribution to research regarding girls' delinquency in that it overcomes limitations in the existing literature in four primary areas: (1) it utilizes a large, multi-state, ethnically and racially diverse sample of justice system-involved girls, (2) it examines numerous co-occurring factors influencing delinquency from multiple domains (family, school, peers, etc.) simultaneously, (3) it formally examines race/ethnicity as a moderator of these multivariate relationships, and (4) it looks at status and criminal arrests independently in order to highlight possible differences in the patterning of risk factors associated with each. These findings have important implications for prevention, treatment and interventions with girls involved in the juvenile justice system.^
Resumo:
Background There is substantial evidence from high income countries that neighbourhoods have an influence on health independent of individual characteristics. However, neighbourhood characteristics are rarely taken into account in the analysis of urban health studies from developing countries. Informal urban neighbourhoods are home to about half of the population in Aleppo, the second largest city in Syria (population>2.5 million). This study aimed to examine the influence of neighbourhood socioeconomic status (SES) and formality status on self-rated health (SRH) of adult men and women residing in formal and informal urban neighbourhoods in Aleppo. Methods The study used data from 2038 survey respondents to the Aleppo Household Survey, 2004 (age 18–65 years, 54.8% women, response rate 86%). Respondents were nested in 45 neighbourhoods. Five individual-level SES measures, namely education, employment, car ownership, item ownership and household density, were aggregated to the level of neighbourhood. Multilevel regression models were used to investigate associations. Results We did not find evidence of important SRH variation between neighbourhoods. Neighbourhood average of household item ownership was associated with a greater likelihood of reporting excellent SRH in women; odds ratio (OR) for an increase of one item on average was 2.3 (95% CI 1.3-4.4 (versus poor SRH)) and 1.7 (95% CI 1.1-2.5 (versus normal SRH)), adjusted for individual characteristics and neighbourhood formality. After controlling for individual and neighbourhood SES measures, women living in informal neighbourhoods were less likely to report poor SRH than women living in formal neighbourhoods (OR= 0.4; 95% CI (0.2- 0.8) (versus poor SRH) and OR=0.5; 95%; CI (0.3-0.9) (versus normal SRH). Conclusions Findings support evidence from high income countries that certain characteristic of neighbourhoods affect men and women in different ways. Further research from similar urban settings in developing countries is needed to understand the mechanisms by which informal neighbourhoods influence women’s health.
Resumo:
It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.