9 resultados para transmission network expansion planning
em Digital Commons at Florida International University
Resumo:
The predictions contained within this dissertation suggest further rapid growth of the cruise industry and the requirement for additional cruise ship berthing worldwide. The factors leading to the tremendous growth in the cruise marketplace are identified and individually addressed. Unfortunately, planning factors associated with the design and construction of cruise ship seaports are not readily available and methods to manage this growth have not been addressed. This dissertation provides accurate and consolidated planning factors essential for comprehensive consideration of cruise ship requirements and design of growing cruise ship ports. The consolidation of these factors results in faster and better informed choices for the port owner/operator with regard to port expansion. Furthermore, this dissertation proposes development of new systems to better manage increasing passenger and ship traffic. If implemented, this will result in optimized port systems providing a greater level of service to passengers and port authorities while simultaneously minimizing environmental and economic impact. ^
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
This dissertation aimed to improve travel time estimation for the purpose of transportation planning by developing a travel time estimation method that incorporates the effects of signal timing plans, which were difficult to consider in planning models. For this purpose, an analytical model has been developed. The model parameters were calibrated based on data from CORSIM microscopic simulation, with signal timing plans optimized using the TRANSYT-7F software. Independent variables in the model are link length, free-flow speed, and traffic volumes from the competing turning movements. The developed model has three advantages compared to traditional link-based or node-based models. First, the model considers the influence of signal timing plans for a variety of traffic volume combinations without requiring signal timing information as input. Second, the model describes the non-uniform spatial distribution of delay along a link, this being able to estimate the impacts of queues at different upstream locations of an intersection and attribute delays to a subject link and upstream link. Third, the model shows promise of improving the accuracy of travel time prediction. The mean absolute percentage error (MAPE) of the model is 13% for a set of field data from Minnesota Department of Transportation (MDOT); this is close to the MAPE of uniform delay in the HCM 2000 method (11%). The HCM is the industrial accepted analytical model in the existing literature, but it requires signal timing information as input for calculating delays. The developed model also outperforms the HCM 2000 method for a set of Miami-Dade County data that represent congested traffic conditions, with a MAPE of 29%, compared to 31% of the HCM 2000 method. The advantages of the proposed model make it feasible for application to a large network without the burden of signal timing input, while improving the accuracy of travel time estimation. An assignment model with the developed travel time estimation method has been implemented in a South Florida planning model, which improved assignment results.
Resumo:
Various nondestructive testing (NDT) technologies for construction and performance monitoring have been studied for decades. Recently, the rapid evolution of wireless sensor network (WSN) technologies has enabled the development of sensors that can be embedded in concrete to monitor the structural health of infrastructure. Such sensors can be buried inside concrete and they can collect and report valuable volumetric data related to the health of a structure during and/or after construction. Wireless embedded sensors monitoring system is also a promising solution for decreasing the high installation and maintenance cost of the conventional wire based monitoring systems. Wireless monitoring sensors need to operate for long time. However, sensor batteries have finite life-time. Therefore, in order to enable long operational life of wireless sensors, novel wireless powering methods, which can charge the sensors’ rechargeable batteries wirelessly, need to be developed. The optimization of RF wireless powering of sensors embedded in concrete is studied here. First, our analytical results focus on calculating the transmission loss and propagation loss of electromagnetic waves penetrating into plain concrete at different humidity conditions for various frequencies. This analysis specifically leads to the identification of an optimum frequency range within 20–80 MHz that is validated through full-wave electromagnetic simulations. Second, the effects of various reinforced bar configurations on the efficiency of wireless powering are investigated. Specifically, effects of the following factors are studied: rebar types, rebar period, rebar radius, depth inside concrete, and offset placement. This analysis leads to the identification of the 902–928 MHz ISM band as the optimum power transmission frequency range for sensors embedded in reinforced concrete, since antennas working in this band are less sensitive to the effects of varying humidity as well as rebar configurations. Finally, optimized rectennas are designed for receiving and/or harvesting power in order to charge the rechargeable batteries of the embedded sensors. Such optimized wireless powering systems exhibit significantly larger efficiencies than the efficiencies of conventional RF wireless powering systems for sensors embedded in plain or reinforced concrete.
Resumo:
How do local homeland security organizations respond to catastrophic events such as hurricanes and acts of terrorism? Among the most important aspects of this response are these organizations ability to adapt to the uncertain nature of these "focusing events" (Birkland 1997). They are often behind the curve, seeing response as a linear process, when in fact it is a complex, multifaceted process that requires understanding the interactions between the fiscal pressures facing local governments, the institutional pressures of working within a new regulatory framework and the political pressures of bringing together different levels of government with different perspectives and agendas. ^ This dissertation has focused on tracing the factors affecting the individuals and institutions planning, preparing, responding and recovering from natural and man-made disasters. Using social network analysis, my study analyzes the interactions between the individuals and institutions that respond to these "focusing events." In practice, it is the combination of budgetary, institutional, and political pressures or constraints interacting with each other which resembles a Complex Adaptive System (CAS). ^ To investigate this system, my study evaluates the evolution of two separate sets of organizations composed of first responders (Fire Chiefs, Emergency Management Coordinators) and community volunteers organized in the state of Florida over the last fifteen years. Using a social network analysis approach, my dissertation analyzes the interactions between Citizen Corps Councils (CCCs) and Community Emergency Response Teams (CERTs) in the state of Florida from 1996–2011. It is the pattern of interconnections that occur over time that are the focus of this study. ^ The social network analysis revealed an increase in the amount and density of connections between these organizations over the last fifteen years. The analysis also exposed the underlying patterns in these connections; that as the networks became more complex they also became more decentralized though not in any uniform manner. The present study brings to light a story of how communities have adapted to the ever changing circumstances that are sine qua non of natural and man-made disasters.^
Resumo:
To promote the use of bicycle transportation mode in times of increasing urban traffic congestion, Broward County Metropolitan Planning Organization funded the development of a Web-based trip planner for cyclists. This presentation demonstrates the integration of the ArcGIS Server 9.3 environment with the ArcGIS JavaScript Extension for Google Maps API and the Google Local Search Control for Maps API. This allows the use of Google mashup GIS functionality, i.e., Google local search for selection of trip start, trip destination, and intermediate waypoints, and the integration of Google Maps base layers. The ArcGIS Network Analyst extension is used for the route search, where algorithms for fastest, safest, simplest, most scenic, and shortest routes are imbedded. This presentation also describes how attributes of the underlying network sources have been combined to facilitate the search for optimized routes.
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
To promote the use of bicycle transportation mode in times of increasing urban traffic congestion, Broward County Metropolitan Planning Organization funded the development of a Web-based trip planner for cyclists. This presentation demonstrates the integration of the ArcGIS Server 9.3 environment with the ArcGIS JavaScript Extension for Google Maps API and the Google Local Search Control for Maps API. This allows the use of Google mashup GIS functionality, i.e., Google local search for selection of trip start, trip destination, and intermediate waypoints, and the integration of Google Maps base layers. The ArcGIS Network Analyst extension is used for the route search, where algorithms for fastest, safest, simplest, most scenic, and shortest routes are imbedded. This presentation also describes how attributes of the underlying network sources have been combined to facilitate the search for optimized routes.
Resumo:
The purpose of this study was to analyze the network performance by observing the effect of varying network size and data link rate on one of the most commonly found network configurations. Computer networks have been growing explosively. Networking is used in every aspect of business, including advertising, production, shipping, planning, billing, and accounting. Communication takes place through networks that form the basis of transfer of information. The number and type of components may vary from network to network depending on several factors such as requirement and actual physical placement of the networks. There is no fixed size of the networks and they can be very small consisting of say five to six nodes or very large consisting of over two thousand nodes. The varying network sizes make it very important to study the network performance so as to be able to predict the functioning and the suitability of the network. The findings demonstrated that the network performance parameters such as global delay, load, router processor utilization, router processor delay, etc. are affected. The findings demonstrated that the network performance parameters such as global delay, load, router processor utilization, router processor delay, etc. are affected significantly due to the increase in the size of the network and that there exists a correlation between the various parameters and the size of the network. These variations are not only dependent on the magnitude of the change in the actual physical area of the network but also on the data link rate used to connect the various components of the network.