12 resultados para total reaction cross sections
em Digital Commons at Florida International University
Resumo:
The kaon electroproduction reaction H(e, e ′K+)Λ was studied as a function of the four momentum transfer, Q2, for different values of the virtual photon polarization parameter. Electrons and kaons were detected in coincidence in two High Resolution Spectrometers (HRS) at Jefferson Lab. Data were taken at electron beam energies ranging from 3.4006 to 5.7544 GeV. The kaons were identified using combined time of flight information and two Aerogel Čerenkov detectors used for particle identification. For different values of Q2 ranging from 1.90 to 2.35 GeV/c2 the center of mass cross sections for the Λ hyperon were determined for 20 kinematics and the longitudinal, σ L, and transverse, σT, terms were separated using the Rosenbluth separation technique. ^ Comparisons between available models and data have been studied. The comparison supports the t-channel dominance behavior for kaon electroproduction. All models seem to underpredict the transverse cross section. An estimate of the kaon form factor has been explored by determining the sensitivity of the separated cross sections to variations of the kaon EM form factor. From comparison between models and data we can conclude that interpreting the data using the Regge model is quite sensitive to a particular choice for the EM form factors. The data from the E98-108 experiment extends the range of the available kaon electroproduction cross section data to an unexplored region of Q2 where no separations have ever been performed. ^
Resumo:
The single spin asymmetry, ALT ′, and the polarized structure function, σ LT′, for the p( e&ar; , e′K +)Λ reaction in the resonance region have been measured and extracted using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Data were taken at an electron beam energy of 2.567 GeV. The large acceptance of CLAS allows for full azimuthal angle coverage over a large range of center-of-mass scattering angles. Results were obtained that span a range in Q 2 from 0.5 to 1.3 GeV2 and W from threshold up to 2.1 GeV and were compared to existing theoretical calculations. The polarized structure function is sensitive to the interferences between various resonant amplitudes, as well as to resonant and non-resonant amplitudes. This measurement is essential for understanding the structure of nucleons and searching for previously undetected nucleon excited states (resonances) predicted by quark models. The W dependence of the σ LT′ in the kinematic regions dominated by s and u channel exchange (cos qcmk = −0.50, −0.167, 0.167) indicated possible resonance structures not predicted by theoretical calculations. The σLT ′ behavior around W = 1.875 GeV could be the signature of a resonance predicted by the quark models and possibly seen in photoproduction. In the very forward angles where the reaction is dominated by the t-channel, the average σLT ′ was zero. There was no indication of the interference between resonances or resonant and non-resonant amplitudes. This might be indicating the dominance of a single t-channel exchange. Study of the sensitivity of the fifth structure function data to the resonance around 1900 MeV showed that these data were highly sensitive to the various assumptions of the models for the quantum number of this resonance. This project was part of a larger CLAS program to measure cross sections and polarization observables for kaon electroproduction in the nucleon resonance region. ^
Resumo:
We have obtained total and differential cross sections for the strangeness changing charged current weak reaction ν L + p → Λ(Σ0) + L+ using standard dipole form factors, where L stands for an electron, muon, or tau lepton, and L + stands for an positron, anti-muon or anti-tau lepton. We calculated these reactions from near threshold few hundred MeV to 8 GeV of incoming neutrino energy and obtained the contributions of the various form factors to the total and differential cross sections. We did this in support of possible experiments which might be carried out by the MINERνA collaboration at Fermilab. The calculation is phenomenologically based and makes use of SU(3) relations to obtain the standard vector current form factors and data from Λ beta decay to obtain the axial current form factor. We also made estimates for the contributions of the pseudoscalar form factor and for the F E and FS form factors to the total and differential cross sections. We discuss our results and consider under what circumstances we might extract the various form factors. In particular we wish to test the SU(3) assumptions made in determining all the form factors over a range of q2 values. Recently new form factors were obtained from recoil proton measurements in electron-proton electromagnetic scattering at Jefferson Lab. We thus calculated the contributions of the individual form factors to the total and differential cross sections for this new set of form factors. We found that the differential and total cross sections for Λ production change only slightly between the two sets of form factors but that the differential and total cross sections change substantially for Σ 0 production. We discuss the possibility of distinguishing between the two cases for the experiments planned by the MINERνA Collaboration. We also undertook the calculation for the inverse reaction e − + p → Λ + νe for a polarized outgoing Λ which might be performed at Jefferson Lab, and provided additional analysis of the contributions of the individual form factors to the differential cross sections for this case. ^
Resumo:
A high resolution study of the quasielastic 2 H(e, e'p)n reaction was performed in Hall A at the Thomas Jefferson Accelerator Facility in Newport News, Virginia. The measurements were performed at a central momentum transfer of : q: ∼ 2400 MeV/c, and at a central energy transfer of ω ∼ 1500 MeV, a four momentum transfer Q2 = 3.5 (GeV/c)2, covering missing momenta from 0 to 0.5 GeV/c. The majority of the measurements were performed at Φ = 180° and a small set of measurements were done at Φ = 0°. The Hall A High Resolution Spectrometers (HRS) were used to detect coincident electrons and protons, respectively. Absolute 2H(e, e'p) n cross sections were obtained as a function of the recoiling neutron scattering angle with respect to [special characters omitted]. The experimental results were compared to a Plane Wave Impulse Approximation (PWIA) model and to a calculation that includes Final State Interaction (FSI) effects. Experimental 2H(e, e'p)n cross sections were determined with an estimated systematic uncertainty of 7%. The general features of the measured cross sections are reproduced by Glauber based calculations that take the motion of the bound nucleons into account (GEA). Final State Interactions (FSI) contributions were found to depend strongly on the angle of the recoiling neutron with respect to the momentum transfer and on the missing momentum. We found a systematic deviation of the theoretical prediction of about 30%. At small &thetas; nq (&thetas;nq < 60°) the theory overpredicts the cross section while at large &thetas; nq (&thetas;nq > 80°) the theory underestimates the cross sections. We observed an enhancement of the cross section, due to FSI, of about 240%, as compared to PWIA, for a missing momentum of 0.4 GeV/c at an angle of 75°. For missing momentum of 0.5 GeV/c the enhancement of the cross section due to the same FSI effects, was about 270%. This is in agreement with GEA. Standard Glauber calculations predict this large contribution to occur at an angle of 90°. Our results show that GEA better describes the 2H(e, e'p)n reaction.
Resumo:
The research presented in this dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. These processes are characterized by the production of particles with large energies and transverse momenta. Through these processes, this work explored both, the constituent (quark) structure of baryons (specifically nucleons and Δ-Isobars), and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. The first of such reactions is the hard nucleon-nucleon elastic scattering, which was studied here considering the quark exchange between the nucleons to be the dominant mechanism of interaction in the constituent picture. In particular, it was found that an angular asymmetry exhibited by proton-neutron elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon’s structure instead of a more traditional SU(6) three quarks picture. The latter yields an asymmetry around 90o center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and proton-neutron (pn) breakup in 3He, and ΔΔ-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the quark interchange mechanism provides a Quantum Chromodynamics (QCD) description of the reaction. Through the HRM, cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In ΔΔ-isobars production in deuteron breakup, HRM angular distributions for the two ΔΔ channels were compared to the pn channel and to each other. An important prediction fromthis study is that the Δ++Δ- channel consistently dominates Δ+Δ0, which is in contrast with models that unlike the HRM consider a ΔΔ system in the initial state of the interaction. For such models both channels should have the same strength. These results are important in developing a QCD description of the atomic nucleus.
Resumo:
A high resolution study of the H(e,e'K+)Λ,Σ 0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Σ0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (∼0.07 (GeV/c) 2) and W∼2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (&thetas;CM∼6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and &thetas;CM and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Σ 0/Λ production ratio were performed at &thetas; CM∼6°, where data are not available. Finally, data for the measurements of the differential cross sections and the Σ 0/Λ production were binned in Q2, W and &thetas;CM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.
Resumo:
The CLAS Collaboration is using the p(e, e&feet; K+ p)π- reaction to perform a measurement of the induced polarization of the electroproduced Λ(1116). The parity-violating weak decay of the Λ into pπ- (64%) allows extraction of the recoil polarization of the Λ. The present study uses the CEBAF Large Acceptance Spectrometer (CLAS) to detect the scattered electron, the kaon, and the decay proton. CLAS allows for a large kinematic acceptance in Q2 (0.8 ≤ Q2 ≤ 3.5 GeV2 ), W (1.6 ≤ W ≤ 3.0 GeV), as well as the kaon scattering angle. In this experiment a 5.499 GeV electron beam was incident upon an unpolarized liquid-hydrogen target. The goal is to map out the kinematic dependencies for this polarization observable to provide new constraints for theoretical models of the electromagnetic production of kaon-hyperon final states. Along with previously published photo- and electroproduction cross sections and polarization observables from CLAS, SAPHIR, and GRAAL, these data are needed in a coupled-channel analysis to identify previously unobserved s-channel resonances.^
Resumo:
This dissertation focused on the longitudinal analysis of business start-ups using three waves of data from the Kauffman Firm Survey. ^ The first essay used the data from years 2004-2008, and examined the simultaneous relationship between a firm's capital structure, human resource policies, and its impact on the level of innovation. The firm leverage was calculated as, debt divided by total financial resources. Index of employee well-being was determined by a set of nine dichotomous questions asked in the survey. A negative binomial fixed effects model was used to analyze the effect of employee well-being and leverage on the count data of patents and copyrights, which were used as a proxy for innovation. The paper demonstrated that employee well-being positively affects the firm's innovation, while a higher leverage ratio had a negative impact on the innovation. No significant relation was found between leverage and employee well-being.^ The second essay used the data from years 2004-2009, and inquired whether a higher entrepreneurial speed of learning is desirable, and whether there is a linkage between the speed of learning and growth rate of the firm. The change in the speed of learning was measured using a pooled OLS estimator in repeated cross-sections. There was evidence of a declining speed of learning over time, and it was concluded that a higher speed of learning is not necessarily a good thing, because speed of learning is contingent on the entrepreneur's initial knowledge, and the precision of the signals he receives from the market. Also, there was no reason to expect speed of learning to be related to the growth of the firm in one direction over another.^ The third essay used the data from years 2004-2010, and determined the timing of diversification activities by the business start-ups. It captured when a start-up diversified for the first time, and explored the association between an early diversification strategy adopted by a firm, and its survival rate. A semi-parametric Cox proportional hazard model was used to examine the survival pattern. The results demonstrated that firms diversifying at an early stage in their lives show a higher survival rate; however, this effect fades over time.^
Resumo:
The parity violating weak decay of hyperons offers a valuable means of measuring their polarization, providing insight into the production of strange quarks and the matter they compose. Jefferson Lab's CLAS collaboration has utilized this property of hyperons, publishing the most precise polarization measurements for the Λ and Σ in both photoproduction and electroproduction to date. In contrast, cascades, which contain two strange quarks, can only be produced through indirect processes and as a result, exhibit low cross sections thus remaining experimentally elusive.^ At present, there are two aspects in cascade physics where progress has been minimal: characterizing their production mechanism, which lacks theoretical and experimental developments, and observation of the numerous excited cascade resonances that are required to exist by flavor SU(3) F symmetry. However, CLAS data were collected in 2008 with a luminosity of 68 pb−1 using a circularly polarized photon beam with energies up to 5.45 GeV, incident on a liquid hydrogen target. This dataset is, at present, the world's largest for meson photoproduction in its energy range and provides a unique opportunity to study cascade physics with polarization measurements.^ The current analysis explores hyperon production through the γ p → K+K +Ξ− reaction by providing the first ever determination of spin observables P, Cx and Cz for the cascade. Three of our primary goals are to test the only cascade photoproduction model in existence, examine the underlying processes that give rise to hyperon polarization, and to stimulate future theoretical developments while providing constraints for their parameters. Our research is part of a broader program to understand the production of strange quarks and hadrons with strangeness. The remainder of this document discusses the motivation behind such research, the method of data collection, details of their analysis, and the significance of our results.^
Resumo:
This dissertation presents a study of the D( e, e′p)n reaction carried out at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for a set of fixed values of four-momentum transfer Q 2 = 2.1 and 0.8 (GeV/c)2 and for missing momenta pm ranging from pm = 0.03 to pm = 0.65 GeV/c. The analysis resulted in the determination of absolute D(e,e′ p)n cross sections as a function of the recoiling neutron momentum and it's scattering angle with respect to the momentum transfer [vector] q. The angular distribution was compared to various modern theoretical predictions that also included final state interactions. The data confirmed the theoretical prediction of a strong anisotropy of final state interaction contributions at Q2 of 2.1 (GeV/c)2 while at the lower Q2 value, the anisotropy was much less pronounced. At Q2 of 0.8 (GeV/c)2, theories show a large disagreement with the experimental results. The experimental momentum distribution of the bound proton inside the deuteron has been determined for the first time at a set of fixed neutron recoil angles. The momentum distribution is directly related to the ground state wave function of the deuteron in momentum space. The high momentum part of this wave function plays a crucial role in understanding the short-range part of the nucleon-nucleon force. At Q2 = 2.1 (GeV/c)2, the momentum distribution determined at small neutron recoil angles is much less affected by FSI compared to a recoil angle of 75°. In contrast, at Q2 = 0.8 (GeV/c)2 there seems to be no region with reduced FSI for larger missing momenta. Besides the statistical errors, systematic errors of about 5–6 % were included in the final results in order to account for normalization uncertainties and uncertainties in the determi- nation of kinematic veriables. The measurements were carried out using an electron beam energy of 2.8 and 4.7 GeV with beam currents between 10 to 100 &mgr; A. The scattered electrons and the ejected protons originated from a 15cm long liquid deuterium target, and were detected in conicidence with the two high resolution spectrometers of Hall A at Jefferson Lab.^
Resumo:
A high resolution study of the H(e,e'K+)Λ,Σ0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Σ0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (∼0.07 (GeV/c)2) and W∼2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (θCM~6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and θCM, and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Σ0/Λ production ratio were performed at θCM, where data are not available. Finally, data for the measurements of the differential cross sections and the Σ0/Λ production were binned in Q2, W and θCM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.
Resumo:
This dissertation focused on the longitudinal analysis of business start-ups using three waves of data from the Kauffman Firm Survey. The first essay used the data from years 2004-2008, and examined the simultaneous relationship between a firm’s capital structure, human resource policies, and its impact on the level of innovation. The firm leverage was calculated as, debt divided by total financial resources. Index of employee well-being was determined by a set of nine dichotomous questions asked in the survey. A negative binomial fixed effects model was used to analyze the effect of employee well-being and leverage on the count data of patents and copyrights, which were used as a proxy for innovation. The paper demonstrated that employee well-being positively affects the firm's innovation, while a higher leverage ratio had a negative impact on the innovation. No significant relation was found between leverage and employee well-being. The second essay used the data from years 2004-2009, and inquired whether a higher entrepreneurial speed of learning is desirable, and whether there is a linkage between the speed of learning and growth rate of the firm. The change in the speed of learning was measured using a pooled OLS estimator in repeated cross-sections. There was evidence of a declining speed of learning over time, and it was concluded that a higher speed of learning is not necessarily a good thing, because speed of learning is contingent on the entrepreneur's initial knowledge, and the precision of the signals he receives from the market. Also, there was no reason to expect speed of learning to be related to the growth of the firm in one direction over another. The third essay used the data from years 2004-2010, and determined the timing of diversification activities by the business start-ups. It captured when a start-up diversified for the first time, and explored the association between an early diversification strategy adopted by a firm, and its survival rate. A semi-parametric Cox proportional hazard model was used to examine the survival pattern. The results demonstrated that firms diversifying at an early stage in their lives show a higher survival rate; however, this effect fades over time.