2 resultados para time-dependent behaviour of brittle rocks
em Digital Commons at Florida International University
Resumo:
Predation risk influences a variety of behavioral decisions of many organisms and results in animals having to trade-offs safety with other behaviors. The effects of predation, however, have been largely ignored in the study of vertebrates that forage underwater (divers). I tested the predictions of an on optimal diving model that incorporates the risk of predation, using red eared slider turtles (Trachemys scripta elegans). Specifically, I tested the hypothesis that divers will increase their surface time when instantaneous risk decreases with time at the surface. By using a model aerial predator and exposing turtles to both risk and no risk treatments, I tested how turtles perceive risk at the surface and whether they increase or decrease their surface time depending on how they assess risk. The model's predictions for situations in which risk at the surface is decreasing with time spent there-likely to be the case for aerial predation-were supported by the results. I found that surface time and time spent submerged per dive were significantly greater when turtles were at risk and that turtles also spent more time resting at the bottom when exposed to this treatment. Interestingly, turtles under risk engaged in vigilance behaviors while on the bottom just prior to surfacing. This behavior could have implications for model predictions and future experiments are needed to test whether subsurface vigilance may alter diving decisions made under risk.
Resumo:
Coral reefs are among the most productive ecosystems in the world. Yet, with their recent declines due to disease, climate change, and overfishing, restoration of these habitats is one of the main concerns for ecologists, resource managers, and government organizations. Coral reef restoration aims to promote key ecosystem processes to shift these habitats to their historical state of high coral cover, but few studies have focused on effective ways to promote resilience. In addition, little is known about the impact of restoration on the fish communities. The aim of this study is to understand how the community of herbivorous fishes is affected by the density of coral outplants inside a special protection area located in the Florida Keys National Marine Sanctuary. Grazing rates, number of visits and time spent foraging were compared using video footage of sites previously devoid of corals, and six months after coral restorations had occurred. Coral transplantations did not appear to attract herbivores nor increase grazing rates of fishes. Instead Sparisoma and Acanthurus fishes appear to respond to changes in the environment by modifying their grazing behavior. However, there was an observed increase in visits by Acanthurus species after transplantation for all the sites sampled within the reef. These fishes seemed to prefer low coral cover sites for grazing. This study highlights the importance of examining coral restorations impacts at the community level. Understanding how restoration influences herbivores and other guilds of reef fishes will allow individuals to not only determine if these habitats are returning to their “original” state, but provide more information on the ways these systems cope with changes in the environment.