4 resultados para thin-film approximation
em Digital Commons at Florida International University
Resumo:
In 1972 the ionized cluster beam (ICB) deposition technique was introduced as a new method for thin film deposition. At that time the use of clusters was postulated to be able to enhance film nucleation and adatom surface mobility, resulting in high quality films. Although a few researchers reported singly ionized clusters containing 10$\sp2$-10$\sp3$ atoms, others were unable to repeat their work. The consensus now is that film effects in the early investigations were due to self-ion bombardment rather than clusters. Subsequently in recent work (early 1992) synthesis of large clusters of zinc without the use of a carrier gas was demonstrated by Gspann and repeated in our laboratory. Clusters resulted from very significant changes in two source parameters. Crucible pressure was increased from the earlier 2 Torr to several thousand Torr and a converging-diverging nozzle 18 mm long and 0.4 mm in diameter at the throat was used in place of the 1 mm x 1 mm nozzle used in the early work. While this is practical for zinc and other high vapor pressure materials it remains impractical for many materials of industrial interest such as gold, silver, and aluminum. The work presented here describes results using gold and silver at pressures of around 1 and 50 Torr in order to study the effect of the pressure and nozzle shape. Significant numbers of large clusters were not detected. Deposited films were studied by atomic force microscopy (AFM) for roughness analysis, and X-ray diffraction.^ Nanometer size islands of zinc deposited on flat silicon substrates by ICB were also studied by atomic force microscopy and the number of atoms/cm$\sp2$ was calculated and compared to data from Rutherford backscattering spectrometry (RBS). To improve the agreement between data from AFM and RBS, convolution and deconvolution algorithms were implemented to study and simulate the interaction between tip and sample in atomic force microscopy. The deconvolution algorithm takes into account the physical volume occupied by the tip resulting in an image that is a more accurate representation of the surface.^ One method increasingly used to study the deposited films both during the growth process and following, is ellipsometry. Ellipsometry is a surface analytical technique used to determine the optical properties and thickness of thin films. In situ measurements can be made through the windows of a deposition chamber. A method for determining the optical properties of a film, that is sensitive only to the growing film and accommodates underlying interfacial layers, multiple unknown underlayers, and other unknown substrates was developed. This method is carried out by making an initial ellipsometry measurement well past the real interface and by defining a virtual interface in the vicinity of this measurement. ^
Resumo:
The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2 Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature. ^
Resumo:
Over the last 10 years, the development and the understanding of the mechanical properties of thin film material have been essential for improving the reliability and lifetime in operation of microelectromechanical systems (MEMS). Although the properties of a bulk material might be well characterized, thin-film properties are considerably different from those of the bulk and it cannot be assumed that mechanical properties measured using bulk specimens will apply to the same materials when used as a thin film in MEMS. For many microelectronic thin films, the material properties depend strongly on the details of the deposition process and the growth conditions on its substrate. ^ The purpose of this dissertation is to determine the temperature dependence of a gold thin film membrane on the pull down voltage of a MEMS switch as the temperature is varied from room temperature (300 K) to cryogenic temperature (10 K). For this purpose, an RF MEMS shunt switch was designed and fabricated. The switch is composed of a gold coplanar waveguide structure with a gold bridge membrane suspended above an area of the center conductor which is covered by a dielectric (BaTiO3). The gold membrane is actuated by an electrostatic force acting between the transmission line and the membrane when voltage is applied. ^ Material characterization of the gold evaporated thin film membrane was obtained via AFM, SEM, TEM and X-ray diffraction analyses. A mathematical relation was used to estimate the pull down voltage of the switch at cryogenic temperature and results showed that the mathematical theory match the experimental values of the tested MEMS switches. ^
Resumo:
The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature.