4 resultados para thermal light

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake Annie is a small (37 ha), relatively deep (21 m) sinkhole lake on the Lake Wales Ridge (LWR) of central Florida with a long history of study, including monthly limnological monitoring since June, 1983. The record shows high variability in Secchi disc transparency, which ranged from < 1 to 15 m with a trend toward decreasing values over the latter decade of record. We examined available regional meteorological, groundwater and limnological data to determine the drivers and thermal consequences of variability in water transparency. While total nutrient concentrations and chlorophyll-a were highest during years of low transparency, stepwise regression showed that none of these had a signifi cant effect on transparency after water color was taken into account. Repeated years of high precipitation between 1993–2005 caused an increase in water table height, increasing the transport of dissolved substances from the vegetated watershed into the lake. Groundwater stage explained 73 % of the interannual variability in water transparency. Transparency, in turn, explained 85 % of the interannual variability in the heat budget for the lake, which ranged from 1.8 × 108 to 4.1 × 108 Joules m–2 yr–1, encompassing the range reported across Florida lakes. While surface water temperature was not affected by transparency, depths below 5 m warmed faster during the stratifi ed period during years having a lower rate of light extinction. We show that an increase in precipitation of 20 cm per year reduces the depth of the summer euphotic zone and thermocline by 1.9 and 1.6 m, respectively, and causes a 1-month reduction in the duration of winter mixing in this monomictic lake. Because biota have been shown to respond to shifts in light and heat distribution of much smaller magnitude than exhibited here, our work suggests that subtle changes in precipitation linked to climate fl uctuations may have signifi cant physical as well as biotic consequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catering to society's demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. ^ In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compact thermal-fluid systems are found in many industries from aerospace to microelectronics where a combination of small size, light weight, and high surface area to volume ratio fluid networks are necessary. These devices are typically designed with fluid networks consisting of many small parallel channels that effectively pack a large amount of heat transfer surface area in a very small volume but do so at the cost of increased pumping power requirements. ^ To offset this cost the use of a branching fluid network for the distribution of coolant within a heat sink is investigated. The goal of the branch design technique is to minimize the entropy generation associated with the combination of viscous dissipation and convection heat transfer experienced by the coolant in the heat sink while maintaining compact high heat transfer surface area to volume ratios. ^ The derivation of Murray's Law, originally developed to predict the geometry of physiological transport systems, is extended to heat sink designs which minimze entropy generation. Two heat sink designs at different scales are built, and tested experimentally and analytically. The first uses this new derivation of Murray's Law. The second uses a combination of Murray's Law and Constructal Theory. The results of the experiments were used to verify the analytical and numerical models. These models were then used to compare the performance of the heat sink with other compact high performance heat sink designs. The results showed that the techniques used to design branching fluid networks significantly improves the performance of active heat sinks. The design experience gained was then used to develop a set of geometric relations which optimize the heat transfer to pumping power ratio of a single cooling channel element. Each element can be connected together using a set of derived geometric guidelines which govern branch diameters and angles. The methodology can be used to design branching fluid networks which can fit any geometry. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research.