3 resultados para surface approach
em Digital Commons at Florida International University
Resumo:
Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem response to changing climate and regional freshwater management practices.
Resumo:
The estimation of pavement layer moduli through the use of an artificial neural network is a new concept which provides a less strenuous strategy for backcalculation procedures. Artificial Neural Networks are biologically inspired models of the human nervous system. They are specifically designed to carry out a mapping characteristic. This study demonstrates how an artificial neural network uses non-destructive pavement test data in determining flexible pavement layer moduli. The input parameters include plate loadings, corresponding sensor deflections, temperature of pavement surface, pavement layer thicknesses and independently deduced pavement layer moduli.
Resumo:
One in 3,000 people in the US are born with cystic fibrosis (CF), a genetic disorder affecting the reproductive system, pancreas, and lungs. Lung disease caused by chronic bacterial and fungal infections is the leading cause of morbidity and mortality in CF. Identities of the microbes are traditionally determined by culturing followed by phenotypic and biochemical assays. It was first thought that the bacterial infections were caused by a select handful of bacteria such as S. aureus, H. influenzae, B. cenocepacia, and P. aeruginosa. With the advent of PCR and molecular techniques, the polymicrobial nature of the CF lung became evident. The CF lung contains numerous bacteria and the communities are diverse and unique to each patient. The total complexity of the bacterial infections is still being determined. In addition, only a few members of the fungal communities have been identified. Much of the fungal community composition is still a mystery. This dissertation addresses this gap in knowledge. A snap shot of CF sputa bacterial community was obtained using the length heterogeneity-PCR community profiling technique. The profiles show that south Florida CF patients have a unique, diverse, and dynamic bacterial community which changes over time. The identities of the bacteria and fungi present were determined using the state-of-the-art 454 sequencing. Sequencing results show that the CF lung microbiome contains commonly cultured pathogenic bacteria, organisms considered a part of the healthy core biome, and novel organisms. Understanding the dynamic changes of these identified microbes will ultimately lead to better therapeutical interventions. Early detection is key in reducing the lung damage caused by chronic infections. Thus, there is a need for accurate and sensitive diagnostic tests. This issue was addressed by designing a bacterial diagnostic tool targeted towards CF pathogens using SPR. By identifying the organisms associated with the CF lung and understanding their community interactions, patients can receive better treatment and live longer.