9 resultados para student approaches to learning

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical therapy students must apply the relevant information learned in their academic and clinical experience to problem solve in treating patients. I compared the clinical cognitive competence in patient care of second-year masters students enrolled in two different curricular programs: modified problem-based (M P-B; n = 27) and subject-centered (S-C; n = 41). Main features of S-C learning include lecture and demonstration as the major teaching strategies and no exposure to patients or problem solving learning until the sciences (knowledge) have been taught. Comparatively, main features of M P-B learning include case study in small student groups as the main teaching strategy, early and frequent exposure to patients, and knowledge and problem solving skills learned together for each specific case. Basic and clinical orthopedic knowledge was measured with a written test with open-ended items. Problem solving skills were measured with a written case study patient problem test yielding three subscores: assessment, problem identification, and treatment planning. ^ Results indicated that among the demographic and educational characteristics analyzed, there was a significant difference between groups on ethnicity, bachelor degree type, admission GPA, and current GPA, but there was no significant difference on gender, age, possession of a physical therapy assistant license, and GRE score. In addition, the M P-B group achieved a significantly higher adjusted mean score on the orthopedic knowledge test after controlling for GRE scores. The S-C group achieved a significantly higher adjusted mean total score and treatment management subscore on the case study test after controlling for orthopedic knowledge test scores. These findings did not support their respective research hypotheses. There was no significant difference between groups on the assessment and problem identification subscores of the case study test. The integrated M P-B approach promoted superior retention of basic and clinical science knowledge. The results on problem solving skills were mixed. The S-C approach facilitated superior treatment planning skills, but equivalent patient assessment and problem identification skills by emphasizing all equally and exposing the students to more patients with a wider variety of orthopedic physical therapy needs than in the M P-B approach. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current views of the nature of knowledge and of learning suggest that instructional approaches in science education pay closer attention to how students learn rather than on teaching. This study examined the use of approaches to teaching science based on two contrasting perspectives in learning, social constructivist and traditional, and the effects they have on students' attitudes and achievement. Four categories of attitudes were measured using the Upper Secondary Attitude Questionnaire: Attitude towards school, towards the importance of science, towards science as a career, and towards science as a subject in school. Achievement was measured by average class grades and also with a researcher/teacher constructed 30-item test that involved three sub-scales of items based on knowledge, and applications involving near-transfer and far-transfer of concepts. The sample consisted of 202 students in nine intact classrooms in chemistry at a large high school in Miami, Florida, and involved two teachers. Results were analyzed using a two-way analysis of covariance (ANCOVA) with a pretest in attitude as the covariate for attitudes and prior achievement as the covariate for achievement. A comparison of the adjusted mean scores was made between the two groups and between females and males. ^ With constructivist-based teaching, students showed more favorable attitude towards science as a subject, obtained significantly higher scores in class achievement, total achievement and achievement on the knowledge sub-scale of the knowledge and application test. Students in the traditional group showed more favorable attitude towards school. Females showed significantly more positive attitude towards the importance of science and obtained significantly higher scores in class achievement. No significant interaction effects were obtained for method of instruction by gender. ^ This study lends some support to the view that constructivist-based approaches to teaching science is a viable alternative to traditional modes of teaching. It is suggested that in science education, more consideration be given to those aspects of classroom teaching that foster closer coordination between social influences and individual learning. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate and reliable estimation of travel time based on point detector data is needed to support Intelligent Transportation System (ITS) applications. It has been found that the quality of travel time estimation is a function of the method used in the estimation and varies for different traffic conditions. In this study, two hybrid on-line travel time estimation models, and their corresponding off-line methods, were developed to achieve better estimation performance under various traffic conditions, including recurrent congestion and incidents. The first model combines the Mid-Point method, which is a speed-based method, with a traffic flow-based method. The second model integrates two speed-based methods: the Mid-Point method and the Minimum Speed method. In both models, the switch between travel time estimation methods is based on the congestion level and queue status automatically identified by clustering analysis. During incident conditions with rapidly changing queue lengths, shock wave analysis-based refinements are applied for on-line estimation to capture the fast queue propagation and recovery. Travel time estimates obtained from existing speed-based methods, traffic flow-based methods, and the models developed were tested using both simulation and real-world data. The results indicate that all tested methods performed at an acceptable level during periods of low congestion. However, their performances vary with an increase in congestion. Comparisons with other estimation methods also show that the developed hybrid models perform well in all cases. Further comparisons between the on-line and off-line travel time estimation methods reveal that off-line methods perform significantly better only during fast-changing congested conditions, such as during incidents. The impacts of major influential factors on the performance of travel time estimation, including data preprocessing procedures, detector errors, detector spacing, frequency of travel time updates to traveler information devices, travel time link length, and posted travel time range, were investigated in this study. The results show that these factors have more significant impacts on the estimation accuracy and reliability under congested conditions than during uncongested conditions. For the incident conditions, the estimation quality improves with the use of a short rolling period for data smoothing, more accurate detector data, and frequent travel time updates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Now that baby boomers are older and pursuing more career-oriented jobs, managers of the hospitality industry are experiencing the effects of the pre- sent labor crisis; they now know that those vacant hourly jobs are going to be tough to fill with quality personnel. The companies able to attract quality personnel by offering employees what they need and want will be the successful ones in the next decade. The authors explain how the labor crisis is currently affecting the hospitality industry and make suggestions about how firms may survive the "labor crash” of the 1990s with the application of marketing technology to human resource management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-rise buildings are often subjected to high wind loads during hurricanes that lead to severe damage and cause water intrusion. It is therefore important to estimate accurate wind pressures for design purposes to reduce losses. Wind loads on low-rise buildings can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. A new partial turbulence simulation methodology was developed for simulating the effect of low-frequency flow fluctuations on low-rise buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. The methodology was validated by comparing aerodynamic pressure data for building models obtained in the open-jet 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. Field measurements of pressures on Texas Tech University building and Silsoe building were also used for validation purposes. The tests in partial simulation are freed of integral length scale constraints, meaning that model length scales in such testing are only limited by blockage considerations. Thus the partial simulation methodology can be used to produce aerodynamic data for low-rise buildings by using large-scale models in wind tunnels and WOW-like facilities. This is a major advantage, because large-scale models allow for accurate modeling of architectural details, testing at higher Reynolds number, using greater spatial resolution of the pressure taps in high pressure zones, and assessing the performance of aerodynamic devices to reduce wind effects. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. Partial turbulence simulation was used in the WOW to determine the performance of discontinuous perforated parapets in mitigating roof pressures. The comparisons of pressures with and without parapets showed significant reductions in pressure coefficients in the zones with high suctions. This demonstrated the potential of such aerodynamic add-on devices to reduce uplift forces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conjugated polymers (CPs) are intrinsically fluorescent materials that have been used for various biological applications including imaging, sensing, and delivery of biologically active substances. The synthetic control over flexibility and biodegradability of these materials aids the understanding of the structure-function relationships among the photophysical properties, the self-assembly behaviors of the corresponding conjugated polymer nanoparticles (CPNs), and the cellular behaviors of CPNs, such as toxicity, cellular uptake mechanisms, and sub-cellular localization patterns. Synthetic approaches towards two classes of flexible CPs with well-preserved fluorescent properties are described. The synthesis of flexible poly(p-phenylenebutadiynylene)s (PPBs) uses competing Sonogashira and Glaser coupling reactions and the differences in monomer reactivity to incorporate a small amount (~10%) of flexible, non-conjugated linkers into the backbone. The reaction conditions provide limited control over the proportion of flexible monomer incorporation. Improved synthetic control was achieved in a series of flexible poly(p-phenyleneethynylene)s (PPEs) using modified Sonogashira conditions. In addition to controlling the degree of flexibility, the linker provides disruption of backbone conjugation that offers control of the length of conjugated segments within the polymer chain. Therefore, such control also results in the modulation of the photophysical properties of the materials. CPNs fabricated from flexible PPBs are non-toxic to cells, and exhibit subcellular localization patterns clearly different from those observed with non-flexible PPE CPNs. The subcellular localization patterns of the flexible PPEs have not yet been determined, due to the toxicity of the materials, most likely related to the side-chain structure used in this series. The study of the effect of CP flexibility on self-assembly reorganization upon polyanion complexation is presented. Owing to its high rigidity and hydrophobicity, the PPB backbone undergoes reorganization more readily than PPE. The effects are enhanced in the presence of the flexible linker, which enables more efficient π-π stacking of the aromatic backbone segments. Flexibility has minimal effects on the self-assembly of PPEs. Understanding the role of flexibility on the biophysical behaviors of CPNs is key to the successful development of novel efficient fluorescent therapeutic delivery vehicles.