5 resultados para steel with Zn-Al alloy coating

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typically, hermetic feedthroughs for implantable devices, such as pacemakers, use a alumina ceramic insulator brazed to a platinum wire pin. This combination of material has a long history in implantable devices and has been approved by the FDA for implantable hermetic feedthroughs. The growing demand for increased input/output (I/O) hermetic feedthroughs for implantable neural stimulator applications could be addressed by developing a new, cofired platinum/alumina multilayer ceramic technology in a configuration that supports 300 plus I/Os, which is not commercially available. Seven platinum powders with different particle sizes were used to develop different conductive cofire inks to control the densification mismatch between platinum and alumina. Firing profile (ramp rate, burn- out and holding times) and firing atmosphere and concentrations (hydrogen (wet/dry), air, neutral, vacuum) were also optimized. Platinum and alumina exhibit the alloy formation reaction in a reduced atmosphere. Formation of any compound can increase the bonding of the metal/ceramic interface, resulting in enhanced hermeticity. The feedthrough fabricated in a reduced atmosphere demonstrated significantly superior performance than that of other atmospheres. A composite structure of tungsten/platinum ratios graded thru the via structure (pure W, 50/50 W/Pt, 80/20 Pt/W and pure Pt) exhibited the best performance in comparison to the performance of other materials used for ink metallization. Studies on the high temperature reaction of platinum and alumina, previously unreported, showed that, at low temperatures in reduced atmosphere, Pt 3Al or Pt8Al21 with a tetragonal structure would be formed. Cubic Pt3Al is formed upon heating the sample to temperatures above 1350 °C. This cubic structure is the equilibrium state of Pt-Al alloy at high temperatures. The alumina dissolves into the platinum ink and is redeposited as a surface coating. This was observed on both cofired samples and pure platinum thin films coated on a 99.6 Wt% alumina and fired at 1550 °C. Different mechanisms are proposed to describe this behavior based on the size of the platinum particle

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomaterials have been used for more than a century in the human body to improve body functions and replace damaged tissues. Currently approved and commonly used metallic biomaterials such as, stainless steel, titanium, cobalt chromium and other alloys have been found to have adverse effects leading in some cases, to mechanical failure and rejection of the implant. The physical or chemical nature of the degradation products of some implants initiates an adverse foreign body reaction in the tissue. Some metallic implants remain as permanent fixtures, whereas others such as plates, screws and pins used to secure serious fractures are removed by a second surgical procedure after the tissue has healed sufficiently. However, repeat surgical procedures increase the cost of health care and the possibility of patient morbidity. This study focuses on the development of magnesium based biodegradable alloys/metal matrix composites (MMCs) for orthopedic and cardiovascular applications. The Mg alloys/MMCs possessed good mechanical properties and biocompatible properties. Nine different compositions of Mg alloys/MMCs were manufactured and surface treated. Their degradation behavior, ion leaching, wettability, morphology, cytotoxicity and mechanical properties were determined. Alloying with Zn, Ca, HA and Gd and surface treatment resulted in improved mechanical properties, corrosion resistance, reduced cytotoxicity, lower pH and hydrogen evolution. Anodization resulted in the formation of a distinct oxide layer (thickness 5-10 μm) as compared with that produced on mechanically polished samples (~20-50 nm) under ambient conditions. It is envisaged that the findings of this research will introduce a new class of Mg based biodegradable alloys/MMCs and the emergence of innovative cardiovascular and orthopedic implant devices.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kainate receptors are one of the three major groups of ionotropic glutamate receptors in the mammalian central nervous system. They are so named after their most potent agonist, kainic acid (KA), a natural product isolated from the seaweed Diginea simplex. This compound shows both neuroexcitatory and excitotoxic activities, and is an important pharmacological tool for neurophysiological studies. We predict that the more synthetically accessible aza analogues of kainic acid, could act as functional mimics of KA. These could be produced by the 1,3-dipolar cycloaddition of diazoalkanes with trans glutaconate esters. ^ 1,3-Dipolar cycloadditions have been shown to produce 1-pyrazolines that isomerize into 2-pyrazolines. The 1- and 2-pyrazolines can be precursors to aza analogs of kainoids. The regioselectivity, relative stereochemistry and isomerization of the 1-pyrazolines into 2-pyrazolines have been evaluated. Reductions of the 1- and 2-pyrazolines produced aza analogs of kainoids. TMS diazomethane was used as the dipole in 1,3-dipolar cycloaddition reactions leading to aza KA analogs via 2-pyrazolines. A systematic study of cycloaddition-isomerization processes involving TMS-diazomethane and various α, β-unsaturated dipolarophiles has been undertaken. 1H-NMR monitoring of the reaction mixture compositions during the cycloaddition reaction revealed evidence of retro-dipolar cycloaddition processes. Faster formation of 4,5- trans-1-pyrazoline at the beginning of the reaction and subsequent isomerization of this product into 4,5-cis-1-pyrazoline via a retro-dipolar cycloaddition has been observed. Increased reaction time and/or reaction temperature preferentially caused the irreversible isomerization of 4,5-cis-1-pyrazoline into 4,5-cis-2-pyrazoline, which led to high yields of 4,5-cis-2-pyrazolines in the overall process. ^ Two syntheses of the 5-unsubstituted aza-kainic acid have been performed; first, via the reduction of the TMS-eliminated 2-pyrazoline from TMS diazomethane; second by the direct reduction of 1-pyrazoline with Hg/Al-amalgam. 5-Phenyl aza-kainic acid has been produced by direct reduction of 1-pyrazoline, obtained in the reaction of phenyldiazomethane and dibenzyl glutaconate, with Hg/Al-amalgam. ^ Current responses to aza kainate analogs in Aplysia whole cell buccal ganglia indicate potent neuroexcitatory activity. The repetitive exposure of neuronal cells to the 5-unsubstituted aza-kainic acid led to non-desensitizing current responses, showing both binding affinity and neuronal ion-channel activation by the synthesized agonist compound. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ∼27% and ∼24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the incidence of corrosion and fretting in 48 retrieved titanium-6aluminum-4vanadium and/or cobalt-chromium-molybdenum modular total hip prosthesis with respect to alloy material microstructure and design parameters. The results revealed vastly different performance results for the wide array of microstructures examined. Severe corrosion/fretting was seen in 100% of as-cast, 24% of low carbon wrought, 9% of high carbon wrought and 5% of solution heat treated cobalt-chrome. Severe corrosion/fretting was observed in 60% of Ti-6Al-4V components. Design features which allow for fluid entry and stagnation, amplification of contact pressure and/or increased micromotion were also shown to play a role. 75% of prosthesis with high femoral head-trunnion offset exhibited poor performance compared to 15% with a low offset. Large femoral heads (>32mm) did not exhibit poor corrosion or fretting. Implantation time was not sufficient to cause poor performance; 54% of prosthesis with greater than 10 years in-vivo demonstrated none or mild corrosion/fretting.