6 resultados para statistical software
em Digital Commons at Florida International University
Resumo:
As the population of the United States becomes more diverse and the immigrant Hispanic, limited English proficient (LEP) school age population continues to grow, understanding and addressing the needs of these students becomes a pressing question. The purpose of this study was to investigate the effects of group counseling, by a bilingual counselor, on the self-esteem, attendance and counselor utilization of Hispanic LEP high school students. The design for this study was a quasi-experimental design. The experimental and control groups consisted of one class from each of the four levels of English for Speakers of Other Languages (ESOL), I-IV. The counseling intervention, the independent variable, was delivered by a bilingual counselor once a week, for fifteen weeks.^ A total of 112 immigrant Hispanic LEP students selected from the total ESOL student population participated in the study. The experimental and control groups were administered the Culture Free Self Esteem Inventory (CFSEI) Form AD as a pretest and posttest. The Background Information Questionnaire (BIQ) was utilized to gather information on counselor utilization and demographic data. Attendance data were obtained from the students' computer records. At the conclusion of the study the differences between the experimental and control groups on the three dependent variables were compared.^ Statistical analyses of the data were done using SPSS statistical software. A multivariate analysis of variance (MANOVA) was utilized to determine if there were significant differences in the self-esteem scores, attendance and counselor utilization. Correlational analyses was utilized to determine if there was a relationship between English language proficiency and self-esteem and between acculturation level and self-esteem.^ The study results indicate that there were no significant differences in the self-esteem scores and attendance of the subjects in the experimental group at the completion of the group counseling treatment. Counselor utilization was statistically significant for the targeted population. A relationship was found between English language proficiency level and self-esteem scores for students in ESOL levels II, III and IV. No significant correlation was found between acculturation and self-esteem.^ Research on the dropout rates of LEP coupled with the results of this study show that students at the intermediate and advanced levels of ESOL (III and IV) exhibit more positive self-esteem and achieve higher graduation rates that levels I and II. LEP students at levels I and II, once they became familiar with the role and function of school counselors through group counseling, utilized their services. ^
Resumo:
The purpose of this study was to investigate the effect of multimedia instruction on achievement of college students in AMR 2010 from exploration and discovery to 1865. A non-equivalent control group design was used. The dependent variable was achievement. The independent variables were learning styles, method of instruction, and visual clarifiers (notes). The study was conducted using two history sections from Palm Beach Community College, in Boca Raton, Florida, between August and December, 1998. Data were obtained by means of placement scores, posttests, the Productivity Environmental Preference Survey (PEPS), and a researcher-developed student survey. Statistical analysis of the data was done using SPSS statistical software. Demographic variables were compared using Chi square. T tests were run on the posttests to determine the equality of variances. The posttest scores of the groups were compared using the analysis of covariance (ANCOVA) at the .05 level of significance. The first hypothesis there is a significant difference in students' learning of U.S. History when students receive multimedia instruction was supported, F (1, 52) = 16.88, p < .0005, and F = (1, 53) = 8.52, p < .005 for Tests 2 and 3, respectively. The second hypothesis there is a significant difference on the effectiveness of multimedia instruction based on students' various learning preferences was not supported. The last hypotheses there is a significant difference on students' learning of U.S. History when students whose first language is other than English and students who need remediation receive visual clarifiers were not supported. Analysis of covariance (ANCOVA) indicated no difference between the groups on Test 1, Test 2, or Test 3: F (1, 45) = .01, p < .940, F (1, 52) = .77, p < .385, and F (1, 53) =.17, p < .678, respectively, for language. Analysis of covariance (ANCOVA) indicated no significant difference on Test 1, Test 2, or Test 3, between the groups on the variable remediation: F (1, 45) = .31, p < .580, F (1, 52) = 1.44, p < .236, and F (1, 53) = .21, p < .645, respectively. ^
Resumo:
A special undergraduate program for selected biology majors was recently inaugurated at Florida International University. The curriculum emphasizes science, mathematics, and statistics. A statistics course was implemented for this program integrating PowerPoint, statistical software (SPSS), and data from biological/biomedical studies. This didactic experience is discussed here.
Resumo:
The purpose of this study was to investigate the effect of multimedia instruction on achievement of college students in AMH 2010 from exploration and discovery to1865. A non-equivalent control group design was used. The dependent variable was achievement. The independent variables were learning styles method of instruction, and visual clarifiers (notes). The study was conducted using two history sections from Palm Beach Community College, in Boca Raton, Florida, between August and December, 1998. Data were obtained by means of placement scores, posttests, the Productivity Environmental Preference Survey (PEPS), and a researcher-developed student survey. Statistical analysis of the data was done using SPSS statistical software. Demographic variables were compared using Chi square. T tests were run on the posttests to determine the equality of variances. The posttest scores of the groups were compared using the analysis of covariance (ANCOVA) at the .05 level of significance. The first hypothesis there is a significant difference in students' learning of U.S. History when students receive multimedia instruction was supported, F = (1, 52)= 688, p < .0005, and F = (1, 53) = 8.52, p < .005for Tests 2 and 3, respectively. The second hypothesis there is a significant difference on the effectiveness of multimedia instruction based on students' various learning preferences was not supported. The last hypotheses there is a significant difference on students' learning of U.S. History when students whose first language is other than English and students who need remediation receive visual clarifiers were not supported. Analysis of covariance (ANCOVA) indicated no difference between the groups on Test 1, Test 2, or Test 3: F (1, 4 5)= .01, p < .940, F (l, 52) = .77, p < .385, and F (1,53) =.17, p > .678, respectively, for language. Analysis of covariance (ANCOVA) indicated no significant difference on Test 1, Test 2, or Test 3, between the groups on the variable remediation: F (1, 45) = .31, p < .580, F (1, 52) = 1.44, p < .236, and F (1, 53) = .21, p < .645, respectively.
Resumo:
As users continually request additional functionality, software systems will continue to grow in their complexity, as well as in their susceptibility to failures. Particularly for sensitive systems requiring higher levels of reliability, faulty system modules may increase development and maintenance cost. Hence, identifying them early would support the development of reliable systems through improved scheduling and quality control. Research effort to predict software modules likely to contain faults, as a consequence, has been substantial. Although a wide range of fault prediction models have been proposed, we remain far from having reliable tools that can be widely applied to real industrial systems. For projects with known fault histories, numerous research studies show that statistical models can provide reasonable estimates at predicting faulty modules using software metrics. However, as context-specific metrics differ from project to project, the task of predicting across projects is difficult to achieve. Prediction models obtained from one project experience are ineffective in their ability to predict fault-prone modules when applied to other projects. Hence, taking full benefit of the existing work in software development community has been substantially limited. As a step towards solving this problem, in this dissertation we propose a fault prediction approach that exploits existing prediction models, adapting them to improve their ability to predict faulty system modules across different software projects.
Resumo:
As users continually request additional functionality, software systems will continue to grow in their complexity, as well as in their susceptibility to failures. Particularly for sensitive systems requiring higher levels of reliability, faulty system modules may increase development and maintenance cost. Hence, identifying them early would support the development of reliable systems through improved scheduling and quality control. Research effort to predict software modules likely to contain faults, as a consequence, has been substantial. Although a wide range of fault prediction models have been proposed, we remain far from having reliable tools that can be widely applied to real industrial systems. For projects with known fault histories, numerous research studies show that statistical models can provide reasonable estimates at predicting faulty modules using software metrics. However, as context-specific metrics differ from project to project, the task of predicting across projects is difficult to achieve. Prediction models obtained from one project experience are ineffective in their ability to predict fault-prone modules when applied to other projects. Hence, taking full benefit of the existing work in software development community has been substantially limited. As a step towards solving this problem, in this dissertation we propose a fault prediction approach that exploits existing prediction models, adapting them to improve their ability to predict faulty system modules across different software projects.