2 resultados para statistical framework
em Digital Commons at Florida International University
Resumo:
This dissertation delivers a framework to diagnose the Bull-Whip Effect (BWE) in supply chains and then identify methods to minimize it. Such a framework is needed because in spite of the significant amount of literature discussing the bull-whip effect, many companies continue to experience the wide variations in demand that are indicative of the bull-whip effect. While the theory and knowledge of the bull-whip effect is well established, there still is the lack of an engineering framework and method to systematically identify the problem, diagnose its causes, and identify remedies. ^ The present work seeks to fill this gap by providing a holistic, systems perspective to bull-whip identification and diagnosis. The framework employs the SCOR reference model to examine the supply chain processes with a baseline measure of demand amplification. Then, research of the supply chain structural and behavioral features is conducted by means of the system dynamics modeling method. ^ The contribution of the diagnostic framework, is called Demand Amplification Protocol (DAMP), relies not only on the improvement of existent methods but also contributes with original developments introduced to accomplish successful diagnosis. DAMP contributes a comprehensive methodology that captures the dynamic complexities of supply chain processes. The method also contributes a BWE measurement method that is suitable for actual supply chains because of its low data requirements, and introduces a BWE scorecard for relating established causes to a central BWE metric. In addition, the dissertation makes a methodological contribution to the analysis of system dynamic models with a technique for statistical screening called SS-Opt, which determines the inputs with the greatest impact on the bull-whip effect by means of perturbation analysis and subsequent multivariate optimization. The dissertation describes the implementation of the DAMP framework in an actual case study that exposes the approach, analysis, results and conclusions. The case study suggests a balanced solution between costs and demand amplification can better serve both firms and supply chain interests. Insights pinpoint to supplier network redesign, postponement in manufacturing operations and collaborative forecasting agreements with main distributors.^
Resumo:
In the U.S., construction accidents remain a significant economic and social problem. Despite recent improvement, the Construction industry, generally, has lagged behind other industries in implementing safety as a total management process for achieving zero accidents and developing a high-performance safety culture. One aspect of this total approach to safety that has frustrated the construction industry the most has been “measurement”, which involves identifying and quantifying the factors that critically influence safe work behaviors. The basic problem attributed is the difficulty in assessing what to measure and how to measure it—particularly the intangible aspects of safety. Without measurement, the notion of continuous improvement is hard to follow. This research was undertaken to develop a strategic framework for the measurement and continuous improvement of total safety in order to achieve and sustain the goal of zero accidents, while improving the quality, productivity and the competitiveness of the construction industry as it moves forward. The research based itself on an integral model of total safety that allowed decomposition of safety into interior and exterior characteristics using a multiattribute analysis technique. Statistical relationships between total safety dimensions and safety performance (measured by safe work behavior) were revealed through a series of latent variables (factors) that describe the total safety environment of a construction organization. A structural equation model (SEM) was estimated for the latent variables to quantify relationships among them and between these total safety determinants and safety performance of a construction organization. The developed SEM constituted a strategic framework for identifying, measuring, and continuously improving safety as a total concern for achieving and sustaining the goal of zero accidents.