3 resultados para statistical data analysis

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation examines local governments' efforts to promote economic development in Latin America. The research uses a mixed method to explore how cities make decisions to innovate, develop, and finance economic development programs. First, this study provides a comparative analysis of decentralization policies in Argentina and Mexico as a means to gain a better understanding of the degree of autonomy exercised by local governments. Then, it analyzes three local governments each within the province of Santa Fe, Argentina and the State of Guanajuato, Mexico. The principal hypothesis of this dissertation is that if local governments collect more own-source tax revenue, they are more likely to promote economic development and thus, in turn, promote growth for their region. ^ By examining six cities, three of which are in Santa Fe—Rosario, Santa Fe (capital) and Rafaela—and three in Guanajuato—Leon, Guanajuato (capital) and San Miguel de Allende, this dissertation provides a better understanding of public finances and tax collection efforts of local governments in Latin America. Specific attention is paid to each city's budget authority to raise new revenue and efforts to promote economic development. The research also includes a large statistical dataset of Mexico's 2,454 municipalities and a regression analysis that evaluates local tax efforts on economic growth, controlling for population, territorial size, and the professional development. In order to generalize these results, the research tests these discoveries by using statistical data gathered from a survey administered to Latin American municipal officials. ^ The dissertation demonstrates that cities, which experience greater fiscal autonomy measured by the collection of more own-source revenue, are better able to stimulate effective economic development programs, and ultimately, create jobs within their communities. The results are bolstered by a large number of interviews, which were conducted with over 100 finance specialists, municipal presidents, and local authorities. The dissertation also includes an in-depth literature review on fiscal federalism, decentralization, debt financing and local development. It concludes with a discussion of the findings of the study and applications for the practice of public administration.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation.