2 resultados para spray concentration reduction

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study attempted to determine if an excessive amount of 1,1,1 - Trichloroethane was released into the air, the acute effects of exposure and the cause(s) of excessive use. The types of degreasing equipments which were tested in this study are straight vapor and the vapor spray machines. The instruments utilized to obtain the data for this study are Gastech Haline Detector, Organic Vapor Monitor Badge and Personal Sampling Pump. Readings were taken on three different tanks. The data accumulated by this study were obtained during actual cleaning operation. During testing, increased exposure was detected due to exceeding the rate of removal, downward drafts were blowing right over the top of a degreaser and, in some cases, poor general ventilation caused solvent vapor to be blown out of the tank and into the workers' breathing zone, affecting excessive vapor drag out and solvent loss. The results show that, since the characteristics of solvent 1,1,1 - Trichloroethane are well suited to vapor degreasing requirements, by using proper procedures and maintenance, 1,1,1 - Trichloroethane emission during vapor degreasing can be controlled at levels well below the industrial hygiene standard established by OSHA for safe and healthful conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The state of Florida has one of the most severe exotic species invasion problems in the United States, but little is known about their influence on soil biogeochemistry. My dissertation research includes a cross-continental field study in Australia, Florida, and greenhouse and growth chamber experiments, focused on the soil-plant interactions of one of the most problematic weeds introduced in south Florida, Lygodium microphyllum (Old World climbing fern). Analysis of field samples from the ferns introduced and their native range indicate that L microphyllum is highly dependent on arbuscular mycorrhizal fungi (AMF) for phosphorus uptake and biomass accumulation. Relationship with AMF is stronger in relatively dry conditions, which are commonly found in some Florida sites, compared to more common wet sites where the fern is found in its native Australia. In the field, L. microphyllum is found to thrive in a wide range of soil pH, texture, and nutrient conditions, with strongly acidic soils in Australia and slightly acidic soils in Florida. Soils with pH 5.5 - 6.5 provide the most optimal growth conditions for L. microphyllum, and the growth declines significantly at soil pH 8.0, indicating that further reduction could happen in more alkaline soils. Comparison of invaded and uninvaded soil characteristics demonstrates that L. microphyllum can change the belowground soil environment, with more conspicuous impact on nutrient-poor sandy soils, to its own benefit by enhancing the soil nutrient status. Additionally, the nitrogen concentration in the leaves, which has a significant influence in the relative growth rate and photosynthesis, was significantly higher in Florida plants compared to Australian plants. Given that L. microphyllum allocates up to 40% of the total biomass to rhizomes, which aid in rapid regeneration after burning, cutting or chemical spray, hence management techniques targeting the rhizomes look promising. Over all, my results reveal for the first time that soil pH, texture, and AMF are major factors facilitating the invasive success of L. mcirophyllum. Finally, herbicide treatments targeting rhizomes will most likely become the widely used technique to control invasiveness of L. microphyllum in the future. However, a complete understanding of the soil ecosystem is necessary before adding any chemicals to the soil to achieve a successful long-term invasive species management strategy.