3 resultados para specific action steps
em Digital Commons at Florida International University
Resumo:
Rapid advances in electronic communication devices and technologies have resulted in a shift in the way communication applications are being developed. These new development strategies provide abstract views of the underlying communication technologies and lead to the so-called user-centric communication applications. One user-centric communication (UCC) initiative is the Communication Virtual Machine (CVM) technology, which uses the Communication Modeling Language (CML) for modeling communication services and the CVM for realizing these services. In communication-intensive domains such as telemedicine and disaster management, there is an increasing need for user-centric communication applications that are domain-specific and that support the dynamic coordination of communication services commonly found in collaborative communication scenarios. However, UCC approaches like the CVM offer little support for the dynamic coordination of communication services resulting from inherent dependencies between individual steps of a collaboration task. Users either have to manually coordinate communication services, or reply on a process modeling technique to build customized solutions for services in a specific domain that are usually costly, rigidly defined and technology specific. ^ This dissertation proposes a domain-specific modeling approach to address this problem by extending the CVM technology with communication-specific abstractions of workflow concepts commonly found in business processes. The extension involves (1) the definition of the Workflow Communication Modeling Language (WF-CML), a superset of CML, and (2) the extension of the functionality of CVM to process communication-specific workflows. The definition of WF-CML includes the meta-model and the dynamic semantics for control constructs and concurrency. We also extended the CVM prototype to handle the modeling and realization of WF-CML models. A comparative study of the proposed approach with other workflow environments validates the claimed benefits of WF-CML and CVM.^
Resumo:
Understanding who evacuates and who does not has been one of the cornerstones of research on the pre-impact phase of both natural and technological hazards. Its history is rich in descriptive illustrations focusing on lists of characteristics of those who flee to safety. Early models of evacuation focused almost exclusively on the relationship between whether warnings were heard and ultimately believed and evacuation behavior. How people came to believe these warnings and even how they interpreted the warnings were not incorporated. In fact, the individual seemed almost removed from the picture with analysis focusing exclusively on external measures. ^ This study built and tested a more comprehensive model of evacuation that centers on the decision-making process, rather than decision outcomes. The model focused on three important factors that alter and shape the evacuation decision-making landscape. These factors are: individual level indicators which exist independently of the hazard itself and act as cultural lenses through which information is heard, processed and interpreted; hazard specific variables that directly relate to the specific hazard threat; and risk perception. The ultimate goal is to determine what factors influence the evacuation decision-making process. Using data collected for 1998's Hurricane Georges, logistic regression models were used to evaluate how well the three main factors help our understanding of how individuals come to their decisions to either flee to safety during a hurricane or remain in their homes. ^ The results of the logistic regression were significant emphasizing that the three broad types of factors tested in the model influence the decision making process. Conclusions drawn from the data analysis focus on how decision-making frames are different for those who can be designated “evacuators” and for those in evacuation zones. ^