16 resultados para spatial dynamics

em Digital Commons at Florida International University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro-Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June–October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small fishes in seasonally flooded environments such as the Everglades are capable of spreading into newly flooded areas and building up substantial biomass. Passive drift cannot account for the rapidity of observed population expansions. To test the ‘reaction–diffusion’ mechanism for spread of the fish, we estimated their diffusion coefficient and applied a reaction–diffusion model. This mechanism was also too weak to account for the spatial dynamics. Two other hypotheses were tested through modeling. The first—the ‘refuge mechanism’—hypothesizes that small remnant populations of small fishes survive the dry season in small permanent bodies of water (refugia), sites where the water level is otherwise below the surface. The second mechanism, which we call the ‘dynamic ideal free distribution mechanism’ is that consumption by the fish creates a prey density gradient and that fish taxis along this gradient can lead to rapid population expansion in space. We examined the two alternatives and concluded that although refugia may play an important role in recolonization by the fish population during reflooding, only the second, taxis in the direction of the flooding front, seems capable of matching empirical observations. This study has important implications for management of wetlands, as fish biomass is an essential support of higher trophic levels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro- Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June - October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expansive periphyton mats are a striking characteristic of the Florida Everglades. Floating periphyton mats are home to a diverse macroinvertebrate community dominated by chironomid and ceratopogonid larvae and amphipods that use the mat as both a food resource and refuge from predation. While this periphyton complex functions as a self-organizing system, it also serves as a base for trophic interactions with larger organisms. The purpose of my research was to quantify variation in the macroinvertebrate community inhabiting floating periphyton mats, describe the role of mats in shaping food-web dynamics, and describe how these trophic interactions change with eutrophication. ^ I characterized the macroinvertebrate community inhabiting periphyton through a wet-season by describing spatial variation on scales from 0.2 m to 3 km. Floating periphyton mats contained a diverse macroinvertebrate community, with greater taxonomic richness and higher densities of many taxa than adjacent microhabitats. Macroinvertebrate density increased through the wet season as periphyton mats developed. While some variation was noted among sites, spatial patterns were not observed on smaller scales. I also sampled ten sites representing gradients of hydroperiod and nutrient (P) levels. The density of macroinvertebrates inhabiting periphyton mats increased with increasing P availability; however, short-hydroperiod P-enriched sites had the highest macroinvertebrate density. This pattern suggests a synergistic interaction of top-down and bottom-up effects. In contrast, macroinvertebrate density was lower in benthic floc, where it was negatively correlated with hydroperiod. ^ I used two types of mesocosms (field cages and tanks) to manipulate large consumers (fish and grass shrimp) with inclusion/exclusion cages over an experimental P gradient. In most cases, periphyton mats served as an effective predation refuge. Macroinvertebrates were consumed more frequently in P-enriched treatments, where mats were also heavily grazed. Macroinvertebrate densities decreased with increasing P in benthic floc, but increased with enrichment in periphyton mats until levels were reached that caused disassociation of the mat. ^ This research documents several indirect trophic interactions that can occur in complex habitats, and emphasizes the need to characterize dynamics of all microhabitats to fully describe the dynamics of an ecosystem. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reefs are experiencing declines worldwide and recently coral diseases have been identified as significant contributors to coral mortality. However, little is known regarding the factors that drive coral disease distributions and dynamics. Current knowledge of the organisms that cause coral diseases is also limited, with pathogens having been identified for only 5 of the 21 described coral diseases. The study presented here describes coral disease dynamics in terms of occurrence, prevalence, spatial distribution, and host species susceptibility from 2002--2004 on reefs of the Northern Florida Keys (NFK) and Lee Stocking Island (LSI) in the Bahamas' Exuma chain. In addition, this research investigated the influence of temperature, sediment, and nutrient availability on coral disease prevalence and severity. Finally, microbial communities associated with a polymicrobial disease, black band, were examined to address spatial and temporal variability. ^ Four scleractinian diseases were observed in repeated surveys conducted during June-August of each year: black band disease (BBD), white plague type 2 (WP), dark spots syndrome (DSS), and yellow band disease-(YBD). Coral disease prevalence was generally low in both the NFK and LSI as compared to epizootic levels reported previously in the NFK and other regions of the Caribbean. Disease prevalence and species susceptibility varied spatially and temporally. Massive framework species, including Siderastrea siderea, Colpophyllia natans, and Montastraea annularis, along with relatively smaller colonies of Meandrina meandrites and Dichocoenia stokesi, were most susceptible to disease. Temperature, sedimentation, and dissolved inorganic nitrogen were positively correlated with BBD infections. Furthermore, experimental nutrient enrichment exacerbated coral tissue loss to BBD both in situ and in vivo. Profiling of BBD microbial communities using length heterogeneity PCR revealed variation over space and time, with significantly distinct bacterial assemblages in the NFK, LSI, and US Virgin Islands. ^ This study contributes to knowledge of the relationship between coral diseases and the environment, and facilitates predictions regarding potential changes in coral reef communities under differing environmental conditions. Additionally, this research provides further understanding of coral disease dynamics at both the host and microbial pathogen levels.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used a one-dimensional, spatially explicit model to simulate the community of small fishes in the freshwater wetlands of southern Florida, USA. The seasonality of rainfall in these wetlands causes annual fluctuations in the amount of flooded area. We modeled fish populations that differed from each other only in efficiency of resource utilization and dispersal ability. The simulations showed that these trade-offs, along with the spatial and temporal variability of the environment, allow coexistence of several species competing exploitatively for a common resource type. This mechanism, while sharing some characteristics with other mechanisms proposed for coexistence of competing species, is novel in detail. Simulated fish densities resembled patterns observed in Everglades empirical data. Cells with hydroperiods less than 6 months accumulated negligible fish biomass. One unique model result was that, when multiple species coexisted, it was possible for one of the coexisting species to have both lower local resource utilization efficiency and lower dispersal ability than one of the other species. This counterintuitive result is a consequence of stronger effects of other competitors on the superior species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Everglades freshwater marl prairie is a dynamic and spatially heterogeneous landscape, containing thousands of tree islands nested within a marsh matrix. Spatial processes underlie population and community dynamics across the mosaic, especially the balance between woody and graminoid components, and landscape patterns reflect interactions among multiple biotic and abiotic drivers. To better understand these complex, multi-scaled relationships we employed a three-tiered hierarchical design to investigate the effects of seed source, hydrology, and more indirectly fire on the establishment of new woody recruits in the marsh, and to assess current tree island patterning across the landscape. Our analyses were conducted at the ground level at two scales, which we term the micro- and meso-scapes, and results were related to remotely detected tree island distributions assessed in the broader landscape, that is, the macro-scape. Seed source and hydrologic effects on recruitment in the micro- and meso-scapes were analyzed via logistic regression, and spatial aggregation in the macro-scape was evaluated using a grid-based univariate O-ring function. Results varied among regions and scales but several general trends were observed. The patterning of adult populations was the strongest driver of recruitment in the micro- and meso-scape prairies, with recruits frequently aggregating around adults or tree islands. However in the macro-scape biologically associated (second order) aggregation was rare, suggesting that emergent woody patches are heavily controlled by underlying physical and environmental factors such as topography, hydrology, and fire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Everglades periphyton mats are tightly-coupled autotrophic (algae and cyanobacteria) and heterotrophic (eubacteria, fungi and microinvertebrates) microbial assemblages. We investigated the effect of water column total phosphorus and nitrogen concentrations, water depth and hydroperiod on periphyton of net production, respiration, nutrient content, and biomass. Our study sites were located along four transects that extended southward with freshwater sheetflow through sawgrass-dominated marsh. The water source for two of the transects were canal-driven and anchored at canal inputs. The two other transects were rain-driven (ombrotrophic) and began in sawgrass-dominated marsh. Periphyton dynamics were examined for upstream and downstream effects within and across the four transects. Although all study sites were characterized as short hydroperiod and phosphorus-limited oligotrophic, they represent gradients of hydrologic regime, water source and water quality of the southern Everglades. Average periphyton net production of 1.08 mg C AFDW−1 h−1 and periphyton whole system respiration of 0.38 mg C AFDW−1 h−1 rates were net autotrophic. Biomass was generally highest at ombrotrophic sites and sites downstream of canal inputs. Mean biomass over all our study sites was high, 1517.30 g AFDW m−2. Periphyton was phosphorus-limited. Average periphyton total phosphorus content was 137.15 μg P g−1 and average periphyton total N:P ratio was 192:1. Periphyton N:P was a sensitive indicator of water source. Even at extremely low mean water total phosphorus concentrations ( ≤ 0.21 μmol l−1), we found canal source effects on periphyton dynamics at sites adjacent to canal inputs, but not downstream of inflows. These canal source effects were most pronounced at the onset of wet season with initial rewetting. Spatial and temporal variability in periphyton dynamics could not solely be ascribed to water quality, but was often associated with both hydrology and water source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The environmental dynamics of dissolved organic matter (DOM) were characterized for a shallow, subtropical, seagrass-dominated estuarine bay, namely Florida Bay, USA. Large spatial and seasonal variations in DOM quantity and quality were assessed using dissolved organic C (DOC) measurements and spectrophotometric properties including excitation emission matrix (EEM) fluorescence with parallel factor analysis (PARAFAC). Surface water samples were collected monthly for 2 years across the bay. DOM characteristics were statistically different across the bay, and the bay was spatially characterized into four basins based on chemical characteristics of DOM as determined by EEM-PARAFAC. Differences between zones were explained based on hydrology, geomorphology, and primary productivity of the local seagrass community. In addition, potential disturbance effects from a very active hurricane season were identified. Although the overall seasonal patterns of DOM variations were not significantly affected on a bay-wide scale by this disturbance, enhanced freshwater delivery and associated P and DOM inputs (both quantity and quality) were suggested as potential drivers for the appearance of algal blooms in high impact areas. The application of EEM-PARAFAC proved to be ideally suited for studies requiring high sample throughput methods to assess spatial and temporal ecological drivers and to determine disturbance-induced impacts in aquatic ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper demonstrates the usefulness of fluorescence techniques for long-term monitoring and assessment of the dynamics (sources, transport and fate) of chromophoric dissolved organic matter (CDOM) in highly compartmentalized estuarine regions with non-point water sources. Water samples were collected monthly from a total of 73 sampling stations in the Florida Coastal Everglades (FCE) estuaries during 2001 and 2002. Spatial and seasonal variability of CDOM characteristics were investigated for geomorphologically distinct sub-regions within Florida Bay (FB), the Ten Thousand Islands (TTI), and Whitewater Bay (WWB). These variations were observed in both quantity and quality of CDOM. TOC concentrations in the FCE estuaries were generally higher during the wet season (June–October), reflecting high freshwater loadings from the Everglades in TTI, and a high primary productivity of marine biomass in FB. Fluorescence parameters suggested that the CDOM in FB is mainly of marine/microbial origin, while for TTI and WWB a terrestrial origin from Everglades marsh plants and mangroves was evident. Variations in CDOM quality seemed mainly controlled by tidal exchange/mixing of Everglades freshwater with Florida Shelf waters, tidally controlled releases of CDOM from fringe mangroves, primary productivity of marine vegetation in FB and diagenetic processes such as photodegradation (particularly for WWB). The source and dynamics of CDOM in these subtropical estuaries is complex and found to be influenced by many factors including hydrology, geomorphology, vegetation cover, landuse and biogeochemical processes. Simple, easy to measure, high sample throughput fluorescence parameters for surface waters can add valuable information on CDOM dynamics to long-term water quality studies which can not be obtained from quantitative determinations alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a −1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is an essential component of the carbon cycle and a critical driver in controlling variety of biogeochemical and ecological processes in wetlands. The quality of this DOM as it relates to composition and reactivity is directly related to its sources and may vary on temporal and spatial scales. However, large scale, long-term studies of DOM dynamics in wetlands are still scarce in the literature. Here we present a multi-year DOM characterization study for monthly surface water samples collected at 14 sampling stations along two transects within the greater Everglades, a subtropical, oligotrophic, coastal freshwater wetland-mangrove-estuarine ecosystem. In an attempt to assess quantitative and qualitative variations of DOM on both spatial and temporal scales, we determined dissolved organic carbon (DOC) values and DOM optical properties, respectively. DOM quality was assessed using, excitation emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC). Variations of the PARAFAC components abundance and composition were clearly observed on spatial and seasonal scales. Dry versus wet season DOC concentrations were affected by dry-down and re-wetting processes in the freshwater marshes, while DOM compositional features were controlled by soil and higher plant versus periphyton sources respectively. Peat-soil based freshwater marsh sites could be clearly differentiated from marl-soil based sites based on EEM–PARAFAC data. Freshwater marsh DOM was enriched in higher plant and soil-derived humic-like compounds, compared to estuarine sites which were more controlled by algae- and microbial-derived inputs. DOM from fringe mangrove sites could be differentiated between tidally influenced sites and sites exposed to long inundation periods. As such coastal estuarine sites were significantly controlled by hydrology, while DOM dynamics in Florida Bay were seasonally driven by both primary productivity and hydrology. This study exemplifies the application of long term optical properties monitoring as an effective technique to investigate DOM dynamics in aquatic ecosystems. The work presented here also serves as a pre-restoration condition dataset for DOM in the context of the Comprehensive Everglades Restoration Plan (CERP).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wetlands are ecosystems commonly characterized by elevated levels of dissolved organic carbon (DOC), and although they cover a surface area less than 2 % worldwide, they are an important carbon source representing an estimated 15 % of global annual DOC flux to the oceans. Because of their unique hydrological characteristics, fire can be an important ecological driver in pulsed wetland systems. Consequently, wetlands may be important sources not only of DOC but also of products derived from biomass burning, such as dissolved black carbon (DBC). However, the biogeochemistry of DBC in wetlands has not been studied in detail. The objective of this study is to determine the environmental dynamics of DBC in different fire-impacted wetlands. An intensive, 2-year spatial and temporal dynamics study of DBC in a coastal wetland, the Everglades (Florida) system, as well as one-time sampling surveys for the other two inland wetlands, Okavango Delta (Botswana) and the Pantanal (Brazil), were reported. Our data reveal that DBC dynamics are strongly coupled with the DOC dynamics regardless of location, season or recent fire history. The statistically significant linear regression between DOC and DBC was applied to estimate DBC fluxes to the coastal zone through two main riverine DOC export routes in the Everglades ecosystem. The presence of significant amounts of DBC in these three fire-impacted ecosystems suggests that sub-tropical wetlands could represent an important continental-ocean carrier of combustion products from biomass burning. The discrimination of DBC molecular structure (i.e. aromaticity) between coastal and terrestrial samples, and between samples collected in wet and dry season, suggests that spatially-significant variation in DBC source strength and/or degree of degradation may also influence DBC dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flocculent material (floc) is an important energy source in wetlands. In the Florida Everglades, floc is present in both freshwater marshes and coastal environments and plays a key role in food webs and nutrient cycling. However, not much is known about its environmental dynamics, in particular its biological sources and bio-reactivity. We analysed floc samples collected from different environments in the Florida Everglades and applied biomarkers and pigment chemotaxonomy to identify spatial and seasonal differences in organic matter sources. An attempt was made to link floc composition with algal and plant productivity. Spatial differences were observed between freshwater marsh and estuarine floc. Freshwater floc receives organic matter inputs from local periphyton mats, as indicated by microbial biomarkers and chlorophyll-a estimates. At the estuarine sites, the floc is dominated by mangrove as well as diatom inputs from the marine end-member. The hydroperiod (duration and depth of inundation) at the freshwater sites influences floc organic matter preservation, where the floc at the short-hydroperiod site is more oxidised likely due to periodic dry-down conditions. Seasonal differences in floc composition were not consistent and the few that were observed are likely linked to the primary productivity of the dominant biomass (periphyton in the freshwater marshes and mangroves in the estuarine zone). Molecular evidence for hydrological transport of floc material from the freshwater marshes to the coastal fringe was also observed. With the on-going restoration of the Florida Everglades, it is important to gain a better understanding of the biogeochemical dynamics of floc, including its sources, transformations and reactivity.