3 resultados para single-molecule studies

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This series of 5 single-subject studies used the operant conditioning paradigm to investigate, within the two-way influence process, how (a) contingent infant attention can reinforce maternal verbal behaviors during a period of mother-infant interaction and under subsequent experimental manipulation. Differential reinforcement was used to determine if it is possible that an infant attending to the mother (denoted by head-turns towards the image of the mother plus eye contact) increases (reinforces) the mother's verbal response (to a cue from the infant) upon which the infant behavior is contingent. There was also (b) an evaluation during the contrived parent-infant interaction for concurrent operant learning of infant vocal behavior via contingent verbal responding (reinforcement) implemented by the mother. Further, it was noted (c) whether or not the mother reported being aware that her responses were influenced by the infant's behavior. Findings showed: the operant conditioning of the maternal verbal behaviors were reinforced by contingent infant attention; and the operant conditioning of infant vocalizations was reinforced by contingent maternal verbal behaviors. No parent reported (1) being aware of the increase in their verbal response reinforced during operant conditioning of parental behavior nor a decrease in those responses during the DRA reversal phase, or (2) noticing a contingency between infant's and mother's response. By binomial 1-tail tests, the verbal-behavior patterns of the 5 mothers were conditioned by infant reinforcement (p < 0.02) and, concurrently, the vocal-response patterns of the 5 infants were conditioned by maternal reinforcement (p < 0.02). A program of systematic empirical research on the determinants of concurrent conditioning within mother-child interaction may provide a way to evaluate the differential effectiveness of interventions aimed at improving parent-child interactions. The work conducted in the present study is one step in this direction. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can provide accurate, rapid, and sensitive measure of initial nanomaterialscreening. Recent advancement in single cell studies has suggested discovering cell properties not found earlier in traditional bulk assays. A complex phenomenon, like nanotoxicity, may become clearer when studied at the single cell level, including with small colonies of cells. Advances in lab-on-a-chip techniques have played a significant role in drug discoveries and biosensor applications, however, rarely explored for nanomaterialtoxicity assessment. We presented such cell-integrated chip-based approach that provided quantitative and rapid response of cellhealth, through electrochemical measurements. Moreover, the novel design of the device presented in this study was capable of capturing and analyzing the cells at a single cell and small cell-population level. We examined the change in exocytosis (i.e. neurotransmitterrelease) properties of a single PC12 cell, when exposed to CuOand TiO2 nanoparticles. We found both nanomaterials to interfere with the cell exocytosis function. We also studied the whole-cell response of a single-cell and a small cell-population simultaneously in real-time for the first time. The presented study can be a reference to the future research in the direction of nanotoxicity assessment to develop miniature, simple, and cost-effective tool for fast, quantitative measurements at high throughput level. The designed lab-on-a-chip device and measurement techniques utilized in the present work can be applied for the assessment of othernanoparticles' toxicity, as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can provide accurate, rapid, and sensitive measure of initial nanomaterialscreening. Recent advancement in single cell studies has suggested discovering cell properties not found earlier in traditional bulk assays. A complex phenomenon, like nanotoxicity, may become clearer when studied at the single cell level, including with small colonies of cells. Advances in lab-on-a-chip techniques have played a significant role in drug discoveries and biosensor applications, however, rarely explored for nanomaterialtoxicity assessment. We presented such cell-integrated chip-based approach that provided quantitative and rapid response of cellhealth, through electrochemical measurements. Moreover, the novel design of the device presented in this study was capable of capturing and analyzing the cells at a single cell and small cell-population level. We examined the change in exocytosis (i.e. neurotransmitterrelease) properties of a single PC12 cell, when exposed to CuOand TiO2 nanoparticles. We found both nanomaterials to interfere with the cell exocytosis function. We also studied the whole-cell response of a single-cell and a small cell-population simultaneously in real-time for the first time. The presented study can be a reference to the future research in the direction of nanotoxicity assessment to develop miniature, simple, and cost-effective tool for fast, quantitative measurements at high throughput level. The designed lab-on-a-chip device and measurement techniques utilized in the present work can be applied for the assessment of othernanoparticles' toxicity, as well.^