6 resultados para shikonin and derivatives, molecular mechanisms, cancer therapy, EGFR, c-MYC
em Digital Commons at Florida International University
Resumo:
Hyperthermia is usually used at a sub-lethal level in cancer treatment to potentiate the effects of chemotherapy. The purpose of this study is to investigate the role of heating rate in achieving synergistic cell killing by chemotherapy and hyperthermia. For this purpose, in vitro cell culture experiments with a uterine cancer cell line (MES-SA) and its multidrug resistant (MDR) variant MES-SA/Dx5 were conducted. The cytotoxicity, mode of cell death, induction of thermal tolerance and P-gp mediated MDR following the two different modes of heating were studied. Doxorubicin (DOX) was used as the chemotherapy drug. Indocyanine green (ICG), which absorbs near infrared light at 808nm (ideal for tissue penetration), was chosen for achieving rapid rate hyperthermia. A slow rate hyperthermia was provided by a cell culture incubator. The results show that the potentiating effect of hyperthermia to chemotherapy can be maximized by increasing the rate of heating as evident by the results from the cytotoxicity assay. When delivered at the same thermal dose, a rapid increase in temperature from 37°C to 43°C caused more cell membrane damage than gradually heating the cells from 37°C to 43°C and thus allowed for more intracellular accumulation of the chemotherapeutic agents. Different modes of cell death are observed by the two hyperthermia delivery methods. The rapid rate laser-ICG hyperthermia @ 43°C caused cell necrosis whereas the slow rate incubator hyperthermia @ 43°C induced very mild apoptosis. At 43°C a positive correlation between thermal tolerance and the length of hyperthermia exposure is identified. This study shows that by increasing the rate of heating, less thermal dose is needed in order to overcome P-gp mediated MDR.
Resumo:
The serine/threonine kinase LKB1 is a regulator of critical events including development and stress responses in metazoans. The current study was undertaken to determine the function of LKB1 in Dictyostelium . During multicellular development and in response to stress insult, an apparent increase in the DdLKB1 kinase activity was observed. Depletion of DdLKB1 with a knockdown construct led to aberrant development; a severe reduction in prespore cell differentiation and a precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3, a well known cell-fate switch. Furthermore, DdLKB1 depleted cells displayed lower GSK3 activity than wild type cells in response to cAMP stimulation during development and failed to activate AMPK, a well known LKB1 target in mammals, in response to cAMP and stress insults. These results suggest that DdLKB1 positively regulates both GSK3 and AMPK during Dictyostelium development, and DdLKB1 is necessary for AMPK activation during stress response regulation. No apparent GSK3 activation was observed in response to stress insults. Spatial and temporal regulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) along the membrane of polarized cells is important for efficient chemotaxis. A REMI screen for PIP3 suppressors in the absence of stimulation led to the identification of SodC as PIP3 regulator. Consistent with their higher PIP3 levels, sodC− cells showed defects in chemotaxis and exhibited higher intra-cellular superoxide levels. Protein localization studies along with observations from GPI specific PI-PLC treatment of wild-type cells suggested that SodC is a GPI anchored outer-membrane protein. SodC showed superoxide dismutase activity in vitro, and motility defects of sodC− cells can be rescued by expressing the intact SodC but not by the mutant SodC, which has point mutations that affect its dismutase function. Treatment of sodC− cells with LY294002, a pharmacological inhibitor of PI3K, partially rescued the polarization and chemoattractant sensing defects but not motility defects. Consistent with increased intracellular superoxide levels, sodC − cells also exhibited higher basal Ras activity, an upstream regulator of PI3K, which can be suppressed by a cell permeable superoxide scavenger, XTT, indicating that SodC is important in regulation of intracellular superoxide levels thereby regulating the Ras activity and PIP3 levels at the membrane.
Resumo:
The serine/threonine kinase LKB1 is a regulator of critical events including development and stress responses in metazoans. The current study was undertaken to determine the function of LKB1 in Dictyostelium. During multicellular development and in response to stress insult, an apparent increase in the DdLKB1 kinase activity was observed. Depletion of DdLKB1 with a knockdown construct led to aberrant development; a severe reduction in prespore cell differentiation and a precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3, a well known cell-fate switch. Furthermore, DdLKB1 depleted cells displayed lower GSK3 activity than wild type cells in response to cAMP stimulation during development and failed to activate AMPK, a well known LKB1 target in mammals, in response to cAMP and stress insults. These results suggest that DdLKB1 positively regulates both GSK3 and AMPK during Dictyostelium development, and DdLKB1 is necessary for AMPK activation during stress response regulation. No apparent GSK3 activation was observed in response to stress insults. Spatial and temporal regulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) along the membrane of polarized cells is important for efficient chemotaxis. A REMI screen for PIP3 suppressors in the absence of stimulation led to the identification of SodC as PIP3 regulator. Consistent with their higher PIP3 levels, sodC- cells showed defects in chemotaxis and exhibited higher intra-cellular superoxide levels. Protein localization studies along with observations from GPI specific PI-PLC treatment of wild-type cells suggested that SodC is a GPI anchored outer-membrane protein. SodC showed superoxide dismutase activity in vitro, and motility defects of sodC- cells can be rescued by expressing the intact SodC but not by the mutant SodC, which has point mutations that affect its dismutase function. Treatment of sodC- cells with LY294002, a pharmacological inhibitor of PI3K, partially rescued the polarization and chemoattractant sensing defects but not motility defects. Consistent with increased intracellular superoxide levels, sodC- cells also exhibited higher basal Ras activity, an upstream regulator of PI3K, which can be suppressed by a cell permeable superoxide scavenger, XTT, indicating that SodC is important in regulation of intracellular superoxide levels thereby regulating the Ras activity and PIP3 levels at the membrane.
Resumo:
Pseudomonas aeruginosa is an opportunistic pathogen that has received attention because of its close association with cystic fibrosis (CF). Chronic pulmonary infection with the mucoid P. aeruginosa is the leading cause of mortality in CF patients. This bacterium has the ability to sense and adapt to the harsh environment in the CF lung by converting from a nonmucoid to a mucoid state. The mucoid phenotype is caused by overproduction of a polysaccharide called alginate. Alginate production is regulated by the algT/U operon containing five genes, algT/U-mucA-mucB-mucC-mucD. Alginate overproduction in CF isolates has been partially attributed to a loss-of-function mutation in mucA that results in the overexpression of algT. This mucoid phenotype is unstable, reverting to the nonmucoid form when the isolates are cultured outside of the CF lung. This study was undertaken to determine the mechanisms involved in the conversion from the mucoid to the nonmucoid form. Thirty-six spontaneous nonmucoid variants of a known mucoid isolate with a mucA mutation were analyzed. Ten of these isolates were complemented in trans by plasmids containing the algT operon and the algT gene. Chromosomal DNA was extracted and the mucA and algT genes were amplified by the polymerase chain reaction. Sequence analysis of the genes showed that these mutants retained the original mucA mutation but acquired secondary mutations in the algT gene.
Resumo:
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. Steroid hormones, such as estrogen, and growth factors, which include insulin growth factor I/II (IGF-1/IGF-2) therapy has been associated with most if not all of the features of metastasis. It has been determined that IGF-1 increases cell survival of cancer cells and potentiate the effect of E2 and other ligand growth factors on breast cancer cells. However not much information is available that comprehensively expounds on the roles of insulin growth factor receptor (IGFR) and Rab GTPases may play in breast cancer. The latter, Rab GTPases, are small signaling molecules and critical in the regulation of many cellular processes including cell migration, growth via the endocytic pathway. This research involves the role of Rab GTPases, specifically Rab5 and its guanine exchange factors (GEFs), in the promotion of cancer cell migration and invasion. Two important questions abound: Are IGFR stimulation and downstream effect involved the endocytic pathway in carcinogenesis? What role does Rab5 play in cell migration and invasion of cancer cells? The hypothesis is that growth factor signaling is dependent on Rab5 activity in mediating the aggressiveness of cancer cells. The goal is to demonstrate that IGF-1 signaling is dependent on Rab5 function in breast cancer progression. Here, the results thus far, have shown that while activation of Rab5 may mediate increased cell proliferation, migration and invasion in breast cancer cells, the Rab5 GEF, RIN1 interacts with the IGFR thereby facilitating migration and invasion activities in breast cells. Furthermore, endocytosis of the IGFR in breast cancer cells seems to be caveolin dependent as the data has shown. This taken together, the data shows that IGF-1 signaling in breast cancer cells relies on IGF-1R phosphorylation, caveolae internalization and sequestration to the early endosome RIN1 function and Rab5 activation.^
Resumo:
One hundred seventy-nine occupational therapists (OTs) responded to a survey regarding their interests and attitudes toward animal assisted therapy as a treatment modality. It was found that most of the practitioners would be interested in learning more about animal assisted therapy and most felt it is a valid treatment modality to be used by occupational therapists. Furthermore, the most common answer to the question "why would you not be interested in participating in an AAT program," was "I feel I don't know enough about it". It was also found that therapists' most commonly selected patient goals for AAT were in the realm of mental health, whereas the least mentioned goals were more physically based goals. Further, a recommendation was made to educate OTs regarding the uses and benefits of AAT through more research, continuing education programs on AAT, publications in professional journals, and media awareness.