4 resultados para self-phase modulation

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, polynomial phase modulation (PPM) was shown to be a power- and bandwidth-efficient modulation format. These two characteristics are in high demand nowadays specially in mobile applications, where devices with size, weight, and power (SWaP) constraints are common. In this paper, we propose implementing a full-diversity quasiorthogonal space-time block code (QOSTBC) using polynomial phase signals as modulation format. QOSTBCs along with PPM are used in order to improve the power efficiency of communication systems with four transmit antennas. We obtain the optimal PPM constellations that ensure full diversity and maximize the QOSTBC's minimum coding gain distance. Simulation results show that by using QOSTBCs along with a properly selected PPM constellation, full diversity in flat fading channels and thus low BER at high signal-to-noise ratios (SNR) can be ensured. More importantly, it is also shown that QOSTBCs using PPM achieve a better error performance than those using conventional modulation formats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effects of self-monitoring on the homework completion and accuracy rates of four, fourth-grade students with disabilities in an inclusive general education classroom. A multiple baseline across subjects design was utilized to examine four dependent variables: completion of spelling homework, accuracy of spelling homework, completion of math homework, accuracy of math homework. Data were collected and analyzed during baseline, three phases of intervention, and maintenance. ^ Throughout baseline and all phases, participants followed typical classroom procedures, brought their homework to school each day and gave it to the general education teacher. During Phase I of the intervention, participants self-monitored with a daily sheet at home and on the computer at school in the morning using KidTools (Fitzgerald & Koury, 2003); a student friendly, self-monitoring program. They also participated in brief daily conferences to review their self-monitoring sheets with the investigator, their special education teacher. Phase II followed the same steps except conferencing was reduced to two days a week, which were randomly selected by the researcher and Phase III conferencing was one random day a week. Maintenance data were taken over a two-to-three week period subsequent to the end of the intervention. ^ Results of this study demonstrated self-monitoring substantially improved spelling and math homework completion and accuracy rates of students with disabilities in an inclusive, general education classroom. On average, completion and accuracy rates were highest over baseline in Phase III. Self-monitoring led to higher percentages of completion and accuracy during each phase of the intervention compared to baseline, group percentages also rose slightly during maintenance. Therefore, results suggest self-monitoring leads to short-term maintenance in spelling and math homework completion and accuracy. ^ This study adds to the existing literature by investigating the effects of self-monitoring of homework for students with disabilities included in general education classrooms. Future research should consider selecting participants with other demographic characteristics, using peers for conferencing instead of the teacher, and the use of self-monitoring with other academic subjects (e.g., science, history). Additionally, future research could investigate the effects of each of the two self-monitoring components used alone, with or without the conferencing.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polynomial phase modulated (PPM) signals have been shown to provide improved error rate performance with respect to conventional modulation formats under additive white Gaussian noise and fading channels in single-input single-output (SISO) communication systems. In this dissertation, systems with two and four transmit antennas using PPM signals were presented. In both cases we employed full-rate space-time block codes in order to take advantage of the multipath channel. For two transmit antennas, we used the orthogonal space-time block code (OSTBC) proposed by Alamouti and performed symbol-wise decoding by estimating the phase coefficients of the PPM signal using three different methods: maximum-likelihood (ML), sub-optimal ML (S-ML) and the high-order ambiguity function (HAF). In the case of four transmit antennas, we used the full-rate quasi-OSTBC (QOSTBC) proposed by Jafarkhani. However, in order to ensure the best error rate performance, PPM signals were selected such as to maximize the QOSTBC’s minimum coding gain distance (CGD). Since this method does not always provide a unique solution, an additional criterion known as maximum channel interference coefficient (CIC) was proposed. Through Monte Carlo simulations it was shown that by using QOSTBCs along with the properly selected PPM constellations based on the CGD and CIC criteria, full diversity in flat fading channels and thus, low BER at high signal-to-noise ratios (SNR) can be ensured. Lastly, the performance of symbol-wise decoding for QOSTBCs was evaluated. In this case a quasi zero-forcing method was used to decouple the received signal and it was shown that although this technique reduces the decoding complexity of the system, there is a penalty to be paid in terms of error rate performance at high SNRs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The underrepresentation of women in physics has been well documented and a source of concern for both policy makers and educators. My dissertation focuses on understanding the role self-efficacy plays in retaining students, particularly women, in introductory physics. I use an explanatory mixed methods approach to first investigate quantitatively the influence of self-efficacy in predicting success and then to qualitatively explore the development of self-efficacy. In the initial quantitative studies, I explore the utility of self-efficacy in predicting the success of introductory physics students, both women and men. Results indicate that self-efficacy is a significant predictor of success for all students. I then disaggregate the data to examine how self-efficacy develops differently for women and men in the introductory physics course. Results show women rely on different sources of self-efficacy than do men, and that a particular instructional environment, Modeling Instruction, has a positive impact on these sources of self-efficacy. In the qualitative phase of the project, this dissertation focuses on the development of self-efficacy. Using the qualitative tool of microanalysis, I introduce a methodology for understanding how self-efficacy develops moment-by-moment using the lens of self-efficacy opportunities. I then use the characterizations of self-efficacy opportunities to focus on a particular course environment and to identify and describe a mechanism by which Modeling Instruction impacts student self-efficacy. Results indicate that the emphasizing the development and deployment of models affords opportunities to impact self-efficacy. The findings of this dissertation indicate that introducing key elements into the classroom, such as cooperative group work, model development and deployment, and interaction with the instructor, create a mechanism by which instructors can impact the self-efficacy of their students. Results from this study indicate that creating a model to impact the retention rates of women in physics should include attending to self-efficacy and designing activities in the classroom that create self-efficacy opportunities.