4 resultados para self-organized learning
em Digital Commons at Florida International University
Resumo:
Concerns arising out of technology often being used as an add-on to self-directed learning practices in the workplace and factors affecting such learning were investigated through a literature analysis. What is needed is an exploration of new possibilities of computational media on how self-directed learners think, create and learn.
Resumo:
Formal education programs in prisons have had success in reducing recidivism, but the introduction of informal learning can have additional benefits and longer lasting effects. This paper addresses recidivism and its effects on inmates and society at large and how prison educators can facilitate self-directed learning in prisons through Garrison’s model.
Resumo:
A fundamental goal of education is to equip students with self-regulatory capabilities that enable them to educate themselves. Self directedness not only contributes to success in formal instruction but also promotes lifelong learning (Bandura, 1997). The area of research on self-regulated learning is well grounded within the framework of psychological literature attributed to motivation, metacognition, strategy use and learning. This study explored past research and established the purpose of teaching students to self-regulate their learning and highlighted the fact that teachers are expected to assume a major role in the learning process. A student reflective writing journal activity was sustained for a period of two semesters in two fourth-grade mathematics classrooms. The reflective writing journal was analyzed in search of identifying strategies reported by students. Research questions were analyzed using descriptive statistics, frequency counts, cross-tabs and chi-square analyses. ^ Results based on student-use of the journals and teacher interviews indicated that the use of a reflective writing journal does promote self-regulated learning strategies to the extent which the student is engaged in the journaling process. Those students identified as highly self-regulated learners on the basis of their strategy use, were shown to consistently claim to learn math “as well or better than planned” on a weekly basis. Furthermore, good self-regulators were able to recognize specific strategies that helped them do well and change their strategies across time based on the planned learning objectives. The perspectives of the participating teachers were examined in order to establish the context in which the students were working. The effect of “planned change” and/or the resistance to change as established in previous research, from the teachers point of view, was also explored. The analysis of the journal data did establish a significant difference between students who utilized homework as a strategy. ^ Based on the journals and interviews, this study finds that the systematic use of metacognitive, motivational and/or learning strategies can have a positive effect on student's responsiveness to their learning environment. Furthermore, it reflects that teaching students “how to learn” can be a vital part of the effectiveness of any curriculum. ^
Resumo:
This work is the first work using patterned soft underlayers in multilevel three-dimensional vertical magnetic data storage systems. The motivation stems from an exponentially growing information stockpile, and a corresponding need for more efficient storage devices with higher density. The world information stockpile currently exceeds 150EB (ExaByte=1x1018Bytes); most of which is in analog form. Among the storage technologies (semiconductor, optical and magnetic), magnetic hard disk drives are posed to occupy a big role in personal, network as well as corporate storage. However; this mode suffers from a limit known as the Superparamagnetic limit; which limits achievable areal density due to fundamental quantum mechanical stability requirements. There are many viable techniques considered to defer superparamagnetism into the 100's of Gbit/in2 such as: patterned media, Heat-Assisted Magnetic Recording (HAMR), Self Organized Magnetic Arrays (SOMA), antiferromagnetically coupled structures (AFC), and perpendicular magnetic recording. Nonetheless, these techniques utilize a single magnetic layer; and can thusly be viewed as two-dimensional in nature. In this work a novel three-dimensional vertical magnetic recording approach is proposed. This approach utilizes the entire thickness of a magnetic multilayer structure to store information; with potential areal density well into the Tbit/in2 regime. ^ There are several possible implementations for 3D magnetic recording; each presenting its own set of requirements, merits and challenges. The issues and considerations pertaining to the development of such systems will be examined, and analyzed using empirical and numerical analysis techniques. Two novel key approaches are proposed and developed: (1) Patterned soft underlayer (SUL) which allows for enhanced recording of thicker media, (2) A combinatorial approach for 3D media development that facilitates concurrent investigation of various film parameters on a predefined performance metric. A case study is presented using combinatorial overcoats of Tantalum and Zirconium Oxides for corrosion protection in magnetic media. ^ Feasibility of 3D recording is demonstrated, and an emphasis on 3D media development is emphasized as a key prerequisite. Patterned SUL shows significant enhancement over conventional "un-patterned" SUL, and shows that geometry can be used as a design tool to achieve favorable field distribution where magnetic storage and magnetic phenomena are involved. ^