2 resultados para self-deployment

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The underrepresentation of women in physics has been well documented and a source of concern for both policy makers and educators. My dissertation focuses on understanding the role self-efficacy plays in retaining students, particularly women, in introductory physics. I use an explanatory mixed methods approach to first investigate quantitatively the influence of self-efficacy in predicting success and then to qualitatively explore the development of self-efficacy. In the initial quantitative studies, I explore the utility of self-efficacy in predicting the success of introductory physics students, both women and men. Results indicate that self-efficacy is a significant predictor of success for all students. I then disaggregate the data to examine how self-efficacy develops differently for women and men in the introductory physics course. Results show women rely on different sources of self-efficacy than do men, and that a particular instructional environment, Modeling Instruction, has a positive impact on these sources of self-efficacy. In the qualitative phase of the project, this dissertation focuses on the development of self-efficacy. Using the qualitative tool of microanalysis, I introduce a methodology for understanding how self-efficacy develops moment-by-moment using the lens of self-efficacy opportunities. I then use the characterizations of self-efficacy opportunities to focus on a particular course environment and to identify and describe a mechanism by which Modeling Instruction impacts student self-efficacy. Results indicate that the emphasizing the development and deployment of models affords opportunities to impact self-efficacy. The findings of this dissertation indicate that introducing key elements into the classroom, such as cooperative group work, model development and deployment, and interaction with the instructor, create a mechanism by which instructors can impact the self-efficacy of their students. Results from this study indicate that creating a model to impact the retention rates of women in physics should include attending to self-efficacy and designing activities in the classroom that create self-efficacy opportunities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) are widely used for various civilian and military applications, and thus have attracted significant interest in recent years. This work investigates the important problem of optimal deployment of WSNs in terms of coverage and energy consumption. Five deployment algorithms are developed for maximal sensing range and minimal energy consumption in order to provide optimal sensing coverage and maximum lifetime. Also, all developed algorithms include self-healing capabilities in order to restore the operation of WSNs after a number of nodes have become inoperative. Two centralized optimization algorithms are developed, one based on Genetic Algorithms (GAs) and one based on Particle Swarm Optimization (PSO). Both optimization algorithms use powerful central nodes to calculate and obtain the global optimum outcomes. The GA is used to determine the optimal tradeoff between network coverage and overall distance travelled by fixed range sensors. The PSO algorithm is used to ensure 100% network coverage and minimize the energy consumed by mobile and range-adjustable sensors. Up to 30% - 90% energy savings can be provided in different scenarios by using the developed optimization algorithms thereby extending the lifetime of the sensor by 1.4 to 10 times. Three distributed optimization algorithms are also developed to relocate the sensors and optimize the coverage of networks with more stringent design and cost constraints. Each algorithm is cooperatively executed by all sensors to achieve better coverage. Two of our algorithms use the relative positions between sensors to optimize the coverage and energy savings. They provide 20% to 25% more energy savings than existing solutions. Our third algorithm is developed for networks without self-localization capabilities and supports the optimal deployment of such networks without requiring the use of expensive geolocation hardware or energy consuming localization algorithms. This is important for indoor monitoring applications since current localization algorithms cannot provide good accuracy for sensor relocation algorithms in such indoor environments. Also, no sensor redeployment algorithms, which can operate without self-localization systems, developed before our work.