5 resultados para seizure
em Digital Commons at Florida International University
Resumo:
This dissertation proposed a new approach to seizure detection in intracranial EEG recordings using nonlinear decision functions. It implemented well-established features that were designed to deal with complex signals such as brain recordings, and proposed a 2-D domain of analysis. Since the features considered assume both the time and frequency domains, the analysis was carried out both temporally and as a function of different frequency ranges in order to ascertain those measures that were most suitable for seizure detection. In retrospect, this study established a generalized approach to seizure detection that works across several features and across patients. ^ Clinical experiments involved 8 patients with intractable seizures that were evaluated for potential surgical interventions. A total of 35 iEEG data files collected were used in a training phase to ascertain the reliability of the formulated features. The remaining 69 iEEG data files were then used in the testing phase. ^ The testing phase revealed that the correlation sum is the feature that performed best across all patients with a sensitivity of 92% and an accuracy of 99%. The second best feature was the gamma power with a sensitivity of 92% and an accuracy of 96%. In the frequency domain, all of the 5 other spectral bands considered, revealed mixed results in terms of low sensitivity in some frequency bands and low accuracy in other frequency bands, which is expected given that the dominant frequencies in iEEG are those of the gamma band. In the time domain, other features which included mobility, complexity, and activity, all performed very well with an average a sensitivity of 80.3% and an accuracy of 95%. ^ The computational requirement needed for these nonlinear decision functions to be generated in the training phase was extremely long. It was determined that when the duration dimension was rescaled, the results improved and the convergence rates of the nonlinear decision functions were reduced dramatically by more than a 100 fold. Through this rescaling, the sensitivity of the correlation sum improved to 100% and the sensitivity of the gamma power to 97%, which meant that there were even less false negatives and false positives detected. ^
Resumo:
This dissertation introduces an integrated algorithm for a new application dedicated at discriminating between electrodes leading to a seizure onset and those that do not, using interictal subdural EEG data. The significance of this study is in determining among all of these channels, all containing interictal spikes, why some electrodes eventually lead to seizure while others do not. A first finding in the development process of the algorithm is that these interictal spikes had to be asynchronous and should be located in different regions of the brain, before any consequential interpretations of EEG behavioral patterns are possible. A singular merit of the proposed approach is that even when the EEG data is randomly selected (independent of the onset of seizure), we are able to classify those channels that lead to seizure from those that do not. It is also revealed that the region of ictal activity does not necessarily evolve from the tissue located at the channels that present interictal activity, as commonly believed.^ The study is also significant in terms of correlating clinical features of EEG with the patient's source of ictal activity, which is coming from a specific subset of channels that present interictal activity. The contributions of this dissertation emanate from (a) the choice made on the discriminating parameters used in the implementation, (b) the unique feature space that was used to optimize the delineation process of these two type of electrodes, (c) the development of back-propagation neural network that automated the decision making process, and (d) the establishment of mathematical functions that elicited the reasons for this delineation process. ^
Resumo:
This dissertation established a state-of-the-art programming tool for designing and training artificial neural networks (ANNs) and showed its applicability to brain research. The developed tool, called NeuralStudio, allows users without programming skills to conduct studies based on ANNs in a powerful and very user friendly interface. A series of unique features has been implemented in NeuralStudio, such as ROC analysis, cross-validation, network averaging, topology optimization, and optimization of the activation function’s slopes. It also included a Support Vector Machines module for comparison purposes. Once the tool was fully developed, it was applied to two studies in brain research. In the first study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. This analysis involved extracting features from the spectral power in the gamma frequencies. In the second application, a unique method was devised to link EEG recordings to epileptic and nonepileptic subjects. The contribution of this method consisted of developing a descriptor matrix that can be used to represent any EEG file regarding its duration and the number of electrodes. The first study showed that the inter-electrode mean of the spectral power in the gamma frequencies and its duration above a specific threshold performs better than the other frequencies in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of activity at over 99.99 % certainty. It was demonstrated that (1) the spectral power in the gamma frequencies is highly effective in locating seizures from EEG and (2) activity can be used to link EEG recordings to epileptic and non-epileptic subjects. These two studies required high computational load and could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio has been recently awarded a patent (US patent No. 7502763).
Resumo:
Despite the ongoing "war on drugs" the seizure rates for phenethylamines and their analogues have been steadily increasing over the years. The illicit manufacture of these compounds has become big business all over the world making it all the more attractive to the inexperienced "cook". However, as a result, the samples produced are more susceptible to contamination with reactionary byproducts and leftover reagents. These impurities are useful in the analysis of seized drugs as their identities can help to determine the synthetic pathway used to make these drugs and thus, the provenance of these analytes. In the present work two fluorescent dyes, 4-fluoro-7-nitrobenzofurazan and 5-(4,6-dichlorotriazinyl)aminofluorescein, were used to label several phenethylamine analogues for electrophoretic separation with laser-induced fluorescence detection. The large scale to which law enforcement is encountering these compounds has the potential to create a tremendous backlog. In order to combat this, a rapid, sensitive method capable of full automation is required. Through the utilization of the inline derivatization method developed whereby analytes are labeled within the capillary efficiently in a minimum span of time, this can be achieved. The derivatization and separation parameters were optimized on the basis of a variety of experimentally determined factors in order to give highly resolved peaks in the fluorescence spectrum with limits of detection in the low µg/mL range.
Resumo:
This dissertation established a state-of-the-art programming tool for designing and training artificial neural networks (ANNs) and showed its applicability to brain research. The developed tool, called NeuralStudio, allows users without programming skills to conduct studies based on ANNs in a powerful and very user friendly interface. A series of unique features has been implemented in NeuralStudio, such as ROC analysis, cross-validation, network averaging, topology optimization, and optimization of the activation function’s slopes. It also included a Support Vector Machines module for comparison purposes. Once the tool was fully developed, it was applied to two studies in brain research. In the first study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. This analysis involved extracting features from the spectral power in the gamma frequencies. In the second application, a unique method was devised to link EEG recordings to epileptic and non-epileptic subjects. The contribution of this method consisted of developing a descriptor matrix that can be used to represent any EEG file regarding its duration and the number of electrodes. The first study showed that the inter-electrode mean of the spectral power in the gamma frequencies and its duration above a specific threshold performs better than the other frequencies in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of activity at over 99.99 % certainty. It was demonstrated that 1) the spectral power in the gamma frequencies is highly effective in locating seizures from EEG and 2) activity can be used to link EEG recordings to epileptic and non-epileptic subjects. These two studies required high computational load and could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio has been recently awarded a patent (US patent No. 7502763).